Evaluation of Social Cost of Monopoly in Iranian Industries:
Leibenstein Approach

Mohammad Nabi Shahiki Tash
Department of Economics, University of Sistan and Baluchestan, Zahedan, Iran
mohammad_tash@eco.usb.ac.ir

Forough Jahantigh*
Department of Economics, University of Sistan and Baluchestan, Zahedan, Iran
f_jahantigh@yahoo.com

Mosayeb Pahlavani
Department of Economics, University of Sistan and Baluchestan, Zahedan, Iran.
pahlavani@hamoon.usb.ac.ir

Abstract
The main objective of this research is to evaluate the social costs of monopoly in Iranian concentrated industries during 1996-2006. Leibenstein approach has been employed to evaluate the social costs. Leibenstein believed that most monopolistic industries operate inefficiently because of being in the safe margin. Hence, he proposed that the costs of inefficiency be added to the welfare triangle. Results show that "manufacture of tobacco products, recycling, manufacture of medical, precision and optical instruments, watches and clocks, manufacture of coke, refined petroleum products and nuclear fuel, manufacture of fabricated metal products, except machinery and equipment " have imposed the most social cost on the society due to their inefficiency and deadweight loss of the welfare triangle. The social cost that these industries imposed on the society is equal to 100.47, 54.701, 41.039, 39.509 and 31.241 percent of the sales, respectively. In other words, a social cost of 24.01 percent of the sales is imposed on consumers in Iran by the concentrated industries.

Keywords: Social Cost, Monopoly, Concentration, Leibenstein, Welfare Triangle, Inefficiency, Iran.
JEL Classifications: L00, L1, L2.

Received: 15/12/2013
Accepted: 18/2/2015
* The Corresponding Author
1. Introduction
Based on the microeconomics and industrial economics theories, it is expected that the monopoly leads to disruption in optimal allocation of resource and welfare costs for the consumers. In other words, there is a direct relationship between effective monopoly and welfare cost in the society and the social costs are imposed on society proportional to the deviation of the competitive situation. By looking at the studies conducted in the country it is observed that one of the prominent features of the industrial sector is the lack of competition in most activities of this sector. These studies confirm that in 2005, about 74% of the country's industrial firms have been at the disposal of the industries with \(CR_4 < 40 \) and they have accounted for 35% of sales of industrial sector. More accurately, 11941 firms have been at the disposal of industries with \(CR_4 < 40 \). The industries with \(CR_4 \geq 40 \) have covered about 4077 firms and the industries with \(CR_4 \geq 60 \) have covered about 1910 firms. The industries with \(CR_4 \geq 60 \) have accounted for 55% of sales of industrial sector. If we consider the industrial markets with a concentration ratio over 40% as the non-competitive industries (effective monopoly), we may accept that among 132 four-digit industries, the monopolistic forces are more effective than competitive forces in 84 industries and the effective competition exists only in 51 four-digit industries. Basically, the non-competitive industries have accounted for over 65% of industry's sale in 2005, while this percent has been 35% for competitive industries (Khodadad Kashi, 2000).

Also, according to Khodadad Kashi (2000), about 74.4% of the firms operating in the industrial sector in 2007 have been at the disposal of industries with \(CR_4 < 40 \) which have accounted for 30% of industry's sales, while the concentrated industries (\(CR_4 \geq 40 \)) have had possession of about 25.6 percent of country's firms and have accounted for over 70 percent of industry's sales. In 2007, from 140 four-digit industries of ISIC\(^1\) codes, 92 industries have had concentration intensity of over 40 percent. Also, based on the Herfindahl-Hirschman Index (HHI) in 2005, it is seen that 46 percent of the nation's industries accounting for 40 percent of industry's sales have a concentration ratio less than 1000, and 54 percent of the industries accounting for over 60 percent of industry's sale have the concentration intensity over 1000. This confirms that the concentrated industries possess the most volume of industry's sale. The
Herfindahl-Hirschman index for 2007 also confirms the results of CR₄ index, such that 47 percent of industries have $H - H < 1000$ possessing 40 percent of sales and the remaining 53 percent possess 60 percent of sales having a concentration ratio of over 1000. These conditions indicate that the effective monopoly structure is dominant on most of the Iranian industrial activities.

Now, the aim of this study is to investigate how much welfare cost has been imposed on society due to the governance of effective monopoly structure in Iranian industrial sector. The paper continues with the review of literature; then the theoretical bases of Leibenstein will be reviewed and the manner of measuring this index according to information of ISIC 2-digit code of industry sector will be checked. Finally, after measuring Leibenstein index, we will identify the industries which have imposed the highest welfare costs on society.

2. Literature Review

With a quick look at the studies conducted within and outside the country, we find out that there are various methods for calculating the (deadweight) welfare loss, and every researcher has introduced a different indicator for calculating the welfare loss. In this section, we will review some important studies in this field and measure the welfare loss using different approaches. It is notable that most previous studies on measuring the deadweight loss resulting from monopoly power were carried out outside the nation some the most important of which are reviewed below.

Harberger (1954) attempted, for the first time, to provide a measure for evaluating the welfare cost of monopoly. In his article entitled "Monopoly and resource allocation," Harberger attempted to measure the social burden of monopolistic activities. He concluded that the conditions of deviation from Pareto optimal point and the amount of disruption in resources allocation that leads to cost loss and reduction of consumers' welfare can be expressed in terms of welfare triangle. He considered the price elasticity of demand equal to unit for all industries and calculated the welfare loss for 37 USA industries during 1924-1928 equal to about 0.08 of its national income.

Posner (1974) believes that the welfare cost of monopoly is not limited to welfare triangle, but that the opportunity cost of resources which is spent to obtain and maintain the monopoly power should also be
considered as the negative welfare effects of monopoly. He believes that acquisition of monopoly power is a competitive activity, and this activity takes place to the extent where the cost of monopoly acquisition is equal to the profit and rent the firm expected to get from being monopolist. So, the competition for acquisition of monopoly position will continue between old firms and new entrants until the expected profit is more than the cost of monopoly acquisition, and inevitably these firms must attempt more and employ more inputs and resources. As a result, the competition continues as far as the cost of acquisition of a monopoly is equal to its expected value (Khodadad Kashi, 2001).

Comanor and Leibenstein (1969) believed that due to being in a safe margin, the monopoly industries operate inefficiently. Hence, they believed that in addition to the welfare triangle, the costs of inefficiency of monopoly industries must be considered as welfare cost. Leibenstein also believed that there is a positive relationship between the firm's size and the deadweight loss and whenever the firm is larger, it is possible that it has more monopoly power and consequently the firm would be more inefficient.

In their article entitled "The social costs of monopoly power", Cowling and Mueller (1978) attempted to compute the social cost of monopoly so that mistakes of previous studies do not take place. They believed that the previous studies suffered from bias in different aspects and thus, the social costs of monopoly and monopoly power have been underestimated. From their view, the social cost of monopoly is composed of two components: the first is reduction of consumers' surplus and the second is the costs of acquisition and maintaining of monopoly power. In order to calculate the social costs of monopoly, they compared the situation of real markets with situations where there is no monopoly power. They took the firm as the basis of calculations, while Harberger's base of calculations was industry.

Masson and Shaanan (1984) tried to calculate the social costs of monopoly with the application of the limit pricing theory in dynamic conditions. Their methodology was based on an empirical model of oligopoly and limit pricing behavior. They considered two different situations: 1) The market’s real situation; and 2) Hypothetical situation based on which industrial firms make coalition to maximize their joint profits and at the same time be safe from the others entry. As such, they were able to estimate the size of competition by measuring the deviation
of the actual price from the coalition price. For this, they used the
dynamic limit pricing theory and judged about the size of barriers
considering the amount to which the actual price is higher than the limit
price. Masson and Shaanan employed a different method from
Harberger's and their results indicated that the social cost of monopoly in
the USA is in average equal to 2.9 percent of its national income during
(1950-1966). The old microeconomic theories predict that increased
profit acts as a signal for the entry of new firms. The history of the limit
pricing shows that stabilized firms use this signal to delay the entry of
other firms. The limit pricing model was firstly introduced by Kamien
and Schwartz (1971) and Baron (1973) based on dynamic maximization
and random entry. In this model, there is a synchronicity between the
percentage of entry to industry and percentage of profit and thus they
used the simultaneous equations method to test the hypothesis of the limit
pricing. As such, they could estimate the profit level creating stable entry
barriers, the profit level of the limit pricing, the profit level of optimal
limit pricing and the profit level of monopoly so that it be as a function of
structure and growth of the industry.

Khodadad Kashai (2001) in an article titled "estimation of social cost
of monopoly in Iranian industry sector" showed that the amount of social
cost of monopoly is largely depended to researcher's used method. In
addition to point to various indexes, he estimated the social-welfare cost
of monopoly using two approaches of Harberger, and Cowling and
Mueller as expected these approaches have had different estimation
results, such that the Harberger approach estimated the monopoly costs
equal to 2.03% of industry sector's sales, while in the Cowling and
Mueller approach this amount was equal to 10.25%.

Shahiki Tash and Ekhtiari (2009) in their article titled "Estimating
the welfare cost of effective monopoly in Iranian insurance industry,"
investigated the effective degree of monopoly in insurance market and
estimated the welfare cost of this structure on insurance services
recipients using the indexes of Harberger, Posner and Mueller. The
results of estimating these indexes in (2004) showed that the estimation
of welfare cost in the three indexes is different given the different
assumptions, but totally, it has been imposing a high social cost on
insurance services recipients due to the structure of effective monopoly.
Table 1: The Most Important Basic Studies Aimed at Measuring the Social Costs of Monopoly

<table>
<thead>
<tr>
<th>Researcher</th>
<th>The central purpose</th>
<th>Scale of market and country</th>
<th>The estimated welfare cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harberger (1954)</td>
<td>Monopoly and resources allocation</td>
<td>(37) USA industries based on 4-digit codes</td>
<td>Welfare triangle</td>
</tr>
<tr>
<td>Leibenstein (1966,1973)</td>
<td>x-efficiency and measuring welfare loss</td>
<td>-</td>
<td>welfare triangle + inefficiency of monopoly industries</td>
</tr>
<tr>
<td>Posner (1975)</td>
<td>The welfare cost of monopoly and regulations</td>
<td>The USA industries</td>
<td>welfare triangle + economic rent</td>
</tr>
<tr>
<td>Cowling and Mueller (1978)</td>
<td>The welfare cost of monopoly power</td>
<td>(734) firms</td>
<td>welfare triangle + costs of acquisition and maintenance of monopoly power</td>
</tr>
<tr>
<td>Gisser (1986)</td>
<td>Price leadership and welfare loss in the food industry</td>
<td>445 industries based on 4-digit codes</td>
<td>The half of products obtained from two section of Korno and leader collusion</td>
</tr>
<tr>
<td>Willner (1989)</td>
<td>Price leadership and welfare loss</td>
<td>Food and tobacco industries based on four-digit codes</td>
<td>welfare triangle + costs of acquisition and maintenance of monopoly power</td>
</tr>
<tr>
<td>Shahiki Tash & N asiri (2009)</td>
<td>The welfare cost of effective monopoly</td>
<td>Iranian water cooler industry</td>
<td>The competition level is low among the industry’s firms, but the intensity of barrier to entry is very high.</td>
</tr>
<tr>
<td>Memarnejad (2013)</td>
<td>The welfare cost of monopoly</td>
<td>Iranian telecommunication industry</td>
<td>The calculated welfare loss is 45-65 percent of sale value.</td>
</tr>
</tbody>
</table>

Source: research findings

3. Theoretical Bases of Leibenstein's Social Cost

There are two major views in the investigation of the welfare effects of the performance in an industry. The first view measures the difference
between competitive and non-competitive production as well as price pressures of this difference (allocative inefficiency) assuming the efficient allocation of inputs in production units (existence of the x-efficiency). According to this view, the welfare loss resulting from the non-competitive conditions is equal to the "welfare triangle "or "welfare triangle plus the economic rent". In the second view which was first introduced by Leibenstein (1966), the cost of non-competitive performance is considered beyond the welfare triangle by addressing the concept of x-inefficiency. According to this view, in calculating the welfare cost of an industry performance, it is necessary that the inefficiency and allocative social cost of x-inefficiency be calculated simultaneously. In other words, Leibenstein believed that the monopolistic industries operate inefficiently in many cases due to being in a safe margin. Hence, he believed that in addition to the welfare triangle, the costs of inefficiency of monopolistic industries should be considered as welfare cost. Also he believes that there is a positive relationship between firm’s size and the deadweight loss and whatever the firm is larger it is possible that it has more monopoly power and consequently the firm would be more inefficient.

![Figure 1: Welfare (Deadweight) Loss in the Index Leibenstein](image)

We follow the estimation of welfare loss using Leibenstein method. Moving from monopoly to competition has two possible effects: Removing the monopoly rent and reducing the cost per unit.
Moving from monopoly to competition will reduce the rent of monopoly of per unit product by \(a \), and will reduce the cost of unit by \(x \). On this basis, \(W_a \) is the partial welfare loss created from the allocative inefficiency of monopoly and has been shown by the area of ABC triangle. On the other hand, \(W_{ax} \) stands for the full size of allocative inefficiency due to monopoly shown by the area of ADE triangle. Similarly, \(W_X \) is the welfare loss of \(x \)-inefficiency resulting from monopoly and indicates the higher costs for producing at limited product level. Given that this loss has been calculated regardless of change in product levels it does not contain the allocative element and is equal to the area of rectangle \(C_nC_cDB \). Hence \(a \) is the margin of price-cost that arises under monopoly; \(x \) is the difference between cost of monopoly and competition; \(q_1 \) is the difference in amount that has arisen due to the move from monopoly to competition solely by the cost effect; \(q_2 \) is the difference in amount that directly corresponds to decline in cost. Now, assuming that \(X \) is the cost difference in units of \(a \), that is, \(X \) is equal to \(\frac{x}{a} \) indicates the ratio of cost difference to margin of price-cost under monopoly. So

\[
W_a = \frac{aq_1}{2} \quad (1)
\]

\[
W_{ax} = \frac{(a + Xa)(q_1 + q_2)}{2} \quad (2)
\]

Total welfare loss that has arisen from allocative inefficiency due to monopoly is given by:

\[
\frac{W_{ax}}{W_x} = \frac{aq_1 + aq_2 + Xaq_1 + Xaq_2}{aq_1} \quad (3)
\]

\[
\frac{W_{ax}}{W_x} = (1 + X)^2 \quad (4)
\]

This relationship implies that the cost difference due to monopoly is greater than price-cost margin and subsequently the loss in allocative inefficiency is far greater than the allocative loss which is normally measured. In the previous figure \(x_q \) indicates the unemployed resources in a monopoly situation which would have been employed for producing
more units of $\frac{xq_0}{C_c}$ product. Similarly, the percentage of increased product due to the transition from monopoly to competition is equal to $q_1 + \frac{q_2}{q_0}$ that may be shown as follows:

$$\frac{(a + x)e}{M}$$

Where the elasticity of demand is constant. Therefore, the increase in output level due to resources reallocation as a ratio of original output is as follow:

$$\frac{(a + x)e}{M} \cdot \frac{x}{C_c} = x \left(C_c + a + x \right) = \frac{x}{M} \left(a + x \right)$$

We can write:

$$\frac{ae + x(e - 1)}{MC_c} = \frac{x(a + x)}{MC_c}$$

By dividing both terms of the last equation by $\frac{(a + x)e}{M}$, we get the following equation:

$$1 - \frac{x}{(a + x)e} C_c e$$

Leibenstein (1996) and Comanor and Leibenstein (1969) suggested that the welfare cost of the performance of an industry is beyond the welfare triangle. From their view, in many studies assessing the social costs of an industry's noncompetitive performance, it is assumed that the first optimal equilibrium condition is satisfied. At this point, the deadweight loss due to monopoly, resulting in non-optimal allocation of resources occurs and its amount will be equal to the triangle ABC. In contrast, if the assumption of equality of inputs efficiencies is set aside in competitive and monopoly performance conditions, then the welfare loss due to monopoly units' performance which can even artificially (state license) be formed, will include x-inefficiency as well as expanding the
allocative inefficiency. In this situation, the deadweight loss resulting from monopoly is much greater than the previous approach and will be equal to the area of $ADE + C_m C_c BD$. Quantitatively, one can calculate the amount of welfare loss resulting from allocative inefficiency and x-inefficiency as follows:

$$S_j(ADE) + S_j(C_m C_c BD) = W_{ax} + W_x = \frac{1}{2} (a + x)(q_1 + q_2) + xq_0 \quad (10)$$

In the above relationship, W_{ax} is the comprehensive measure of allocative inefficiency which Leibenstein (1969) considers equal to the area of triangle ADE. Also W_x is Welfare costs resulting from x-inefficiency without any allocative inefficiency. In order to calculate W_{ax} the following relationship is used:

$$W_{ax} = \frac{(dp \times dq)}{2} = \frac{(a + Xa)(q_1 + q_2)}{2} \quad (11)$$

Then, like Harberger’s relationship, by defining the price elasticity of demand of good j as η_j and assuming $\sigma_j = \frac{dp_j}{p_j}$, we get:

$$(x + a) = dp_j = \sigma_j p_j \quad (12)$$

$$dp_j = q_j \eta_j \sigma_j \quad (13)$$

$$W_{ax} = \frac{1}{2} p_j q_j \eta_j \sigma_j^2 \quad (14)$$

$$S_j(ADE) = \frac{1}{2} q \eta \left(\frac{a + x}{p}\right)^2 \quad (15)$$

$$= \frac{1}{2} p_m q \eta \left(\frac{p - c_m}{p} + x\right)^2, a = p - c_m \quad (16)$$

Also, in order to calculate W_x the following relationship is used:

$$W_x = q_0 \times x \quad (17)$$

Then, by calculating $Ln(\hat{u})$ as the technical inefficiency term in the above relationship, the amount of x-inefficiency is calculated as follow:
Evaluation of Social Cost of Monopoly in Iranian Industries:...

\[x = 1 - \frac{C_{min}}{C^b} = 1 - \exp\{-u_a\} \]
(18)

So:

\[W_{total} = W_{ax} + W_x \]
(19)

\[= \frac{1}{2} q p u \eta \left(\frac{p - mc}{p} + \frac{1 - \exp\{-u_a\}}{p} \right)^2 + \left[q_0 \times (1 - \exp\{u_a\}) \right] \]
(20)

Where, \(p, q, \eta, (1 - \exp\{-u_a\}) \) and \((p - mc/p) \) indicate the price, amount of sale, elasticity, inefficient term and price disturbance component, respectively. For calculating the above index, it is required first to calculate the amount of inefficiency of every concentrated firm in industry. Also, the price elasticity of demand can be calculated based on a scientific criterion and we should calculate the amount of disturbance term considering various points of view. Hence, in continue, we assess the manner of calculating each variable of Leibenstain index.

4. Variables in Measuring the Leibenstain Index

As it mentioned in the previous section, in order to measure the Leibenstain index it is required that the three main component (i.e., price elasticity, the amount of inefficiency, and price disturbance component) be calculated. So, in continue, we assess the manner of measuring each of these components.

4.1. How to Measure the Price Elasticity in Leibenstain Index?

The main objective of this research is to evaluate the social costs of the monopoly in Iranian concentrated industries during 1996-2006. One of the key differences between this paper and previous studies is related to the manner of measuring the demand elasticity. In most conducted studies, the elasticity of demand is considered as the same or equal to unit for all industries, whereas once the elasticity is considered equal to unit, it means that the marginal revenue is zero which this in turn leads the welfare cost estimation to be biased and usually its estimation will have a downward bias. Hence, to increase the accuracy of the calculations, in continue, we'll explain how to calculate the elasticity in the Leibenstein index.
If we consider the firm's profit function as follow and the firm uses the Cournot pattern in profit maximization, we will have:

\[\pi_i = P_G(q_i + Q_{-i})q_i - TC_i \]

(21)

Where, \(\pi_i \) is the profit of firm i, \(P_G \) is the price of per unit of good produced by firm i, \(q_i \) is the amount of output produced by firm i, \(Q_{-i} \) is the amount of output produced by all firms in market (except firm i), Q is total amount of output produced in market and \(TC_i \) is total cost of firm i. Since, it is assumed that all firms have same cost structure, we can remove the subscript i and obtain the following equation by maximizing the profit function for n firms (Shahiki and Nasiri, 2011):

\[P_G(Q) + Q P'_G(Q) \frac{Q}{P} = MC_G \]

(22)

Given the above relationship, we can achieve the Lerner index:

\[L_H = \frac{P_G - MC_G}{P_G} = \frac{S}{\eta} \]

(23)

Where, \(L_H \) is the Lerner index, \(MC_G \) is marginal cost of production, \(S \) stands for market share of firm and \(\eta \) is the price elasticity of demand which is equal to \(\eta = -\frac{\partial Q}{\partial P} \frac{P}{Q} \). Since, the cost structure and market share structure of all firms is assumed to be the same, \(\left(S_i = \frac{1}{n} \right) \), it can be shown that the Herfindahl index (H) will be equal to S. because:

\[H = \sum_{i=1}^{n} S_i^2 = \frac{n}{n^2} = \frac{1}{n} = S \]

(24)

\[L_H = \frac{H}{\eta} = \frac{P_G - MC_G}{P_G} \]

(25)

Also, we can adjust the Lerner index according to Cabral (2000) with regard to the conjectural variation coefficient (\(\theta \)) as follows:

\[L_H^\theta = \frac{\theta H}{\mu} = \frac{\theta}{n \eta} \]

(26)
Where $0 \leq \theta \leq \frac{1}{H}$. If $\theta = 0$, the actors play according to the Bertrand pattern, and if $\theta = 1$, the play's pattern will be Kernot and if $\theta = \frac{1}{H}$, the actors' pattern will be collusion or cartel. In other words:

Table 2: The Lerner Index in Terms of Different θ

<table>
<thead>
<tr>
<th>Conjectural variation coefficient</th>
<th>Lerner index</th>
<th>Play pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = 0$</td>
<td>$L^0_H = 0$</td>
<td>Bertrand pattern</td>
</tr>
<tr>
<td>$\theta = 1$</td>
<td>$L^0_H = \frac{H}{\eta}$</td>
<td>Cournot - Nash pattern</td>
</tr>
<tr>
<td>$\theta = \frac{1}{H}$</td>
<td>$L^0_H = \frac{1}{\eta}$</td>
<td>collusion or cartel pattern</td>
</tr>
</tbody>
</table>

Source: Shahiki and Nasiri (2011)

And as a result:

$$\frac{P - MC}{P} = \frac{H}{\eta}$$ \hspace{1cm} (27)

$$\eta = \left\{ \frac{P - MC}{P} \right\} H = \left\{ \frac{P - MC}{P} \right\} \left(\sum S_i^2 \right)$$ \hspace{1cm} (28)

The feature of adjusted Lerner index provided by Cabral is that: first, it shows the monopoly power in supply side; second, it is located between zero and one. In conditions where the market is perfect competition the value of this index is zero, and in the perfect monopoly condition it is equal to unit. Now, for calculating the elasticity, the amount of $\left\{ \frac{P - MC}{P} \right\}$ should be calculated. In this research, the Roeger approach has been used to calculate $\left\{ \frac{P - MC}{P} \right\}$. Roeger (1995) provided an alternative method based on Solow residual for calculating the Lerner
index and based on the technical progress he provided the following approximation for calculating MC_t:

\[
\mu - 1 = \frac{\Delta(\bar{p}_t + \bar{q}_t) - \Delta \Delta(l_{it} + w_{it}) - \bar{\beta}\Delta(m_{it} + p_m^m) - (1 - \bar{\alpha} - \bar{\beta})\Delta(k_{it} + r_{it})}{\bar{\beta}\Delta(m_{it} + p_m^m) + \beta\Delta(m_{it} + p_m^m) - (\bar{\alpha} + \beta)\Delta(k_{it} + r_{it})} \quad (29)
\]

Where, \(\theta_{it} \) indicates the rate of technological progress for the period \(t \) and section \(i \). Based on the constant returns to scale assumption and Mark-up constancy, the above relationship can be stated as follow:

\[
\Delta q_{it} - \alpha\Delta l_{it} - (1 - \alpha)\Delta k_{it} = (\mu - 1)\alpha(\Delta l_{it} - \Delta k_{it}) + \theta_{it}
\]

(30)

Where, the Mark-up price relative to marginal cost is equal to \(\mu = P / MC \) and \(\theta = A / A \) stands for exogenous technical progress. In perfect competition conditions we have \(\mu = 1 \), and in monopolistic competition conditions \(\mu > 1 \). Due to the problem of correlation between \((\Delta l - \Delta k) \) and \(\theta \) of productivity shocks, Roeger provided the following relationship:

\[
DSR_{it} = \alpha\Delta w_{lt} + (1 - \alpha)\Delta p_{it} - \Delta w_{lt} = (\mu - 1)\alpha(\Delta w_{lt} - \Delta r_{it}) + \theta_{it}
\]

(31)

In this condition the problem of endogeneity bias is overcome and dual of Solow residual can be calculated and based on it, we can obtain a relationship between productivity-based price and Mark-up pricing which in this relationship, \(w \) and \(r \) stand for logarithm of wage rate and rental rate of capital, respectively. Using the above relationship, Roeger tried to obtain the nominal Solow residual \((NSR_{it}) \):

\[
NSR_{it} = \Delta(p_{it} + q_{it}) - \alpha\Delta(l_{it} + w_{it}) - (1 - \alpha)\Delta(k_{it} + r_{it}) = (\mu - 1)\alpha(\Delta l_{it} + w_{it}) - \Delta(k_{it} + r_{it})
\]

(32)

In this relationship, the effect of productivity shocks has been removed and the problem of endogeneity has been solved and there is no need to instrumental variable. We can calculate the Mark-up ratio using last relationship as follows:

\[
\mu - 1 = \frac{\Delta(p_{it} + q_{it}) - \alpha\Delta(l_{it} + w_{it}) - (1 - \alpha)\Delta(k_{it} + r_{it})}{\alpha(\Delta(l_{it} + w_{it}) - \Delta(k_{it} + r_{it})}
\]

(33)

On this basis, the elasticity is calculated as follows:
\[\eta = \frac{1}{P - MC} \{H\} \]

(34)

\[\eta = \frac{1}{1 - \frac{\Delta(p_{it} + q_{it}) - \alpha \Delta(l_{it} + w_{it}) - (1 - \alpha)\Delta(k_{it} + r_{it})}{\alpha \Delta(l_{it} + w_{it}) - \Delta(k_{it} + r_{it})}} \{H\} \]

(35)

Table 3: The Estimation of Elasticity in Iranian Industries

<table>
<thead>
<tr>
<th>Elasticity</th>
<th>Industry</th>
<th>FK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.835504</td>
<td>Manufacture of food products and beverages</td>
<td>15</td>
</tr>
<tr>
<td>6.167865</td>
<td>Manufacture of tobacco products</td>
<td>16</td>
</tr>
<tr>
<td>1.386031</td>
<td>Manufacture of textiles</td>
<td>17</td>
</tr>
<tr>
<td>1.21554</td>
<td>Manufacture of wearing apparel; dressing and dyeing of fur</td>
<td>18</td>
</tr>
<tr>
<td>2.189024</td>
<td>Tanning and dressing of leather; manufacture of luggage, handbags, saddlery, harness and footwear</td>
<td>19</td>
</tr>
<tr>
<td>1.635818</td>
<td>Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials</td>
<td>20</td>
</tr>
<tr>
<td>1.100021</td>
<td>Manufacture of paper and paper products</td>
<td>21</td>
</tr>
<tr>
<td>0.702136</td>
<td>Publishing, printing and reproduction of recorded media</td>
<td>22</td>
</tr>
<tr>
<td>0.593242</td>
<td>Manufacture of coke, refined petroleum products and nuclear fuel</td>
<td>23</td>
</tr>
<tr>
<td>0.624761</td>
<td>Manufacture of chemicals and chemical products</td>
<td>24</td>
</tr>
<tr>
<td>0.790493</td>
<td>Manufacture of rubber and plastics products</td>
<td>25</td>
</tr>
<tr>
<td>0.45184</td>
<td>Manufacture of other non-metallic mineral products</td>
<td>26</td>
</tr>
<tr>
<td>0.601317</td>
<td>Manufacture of basic metals</td>
<td>27</td>
</tr>
<tr>
<td>1.143449</td>
<td>Manufacture of fabricated metal products, except machinery and equipment</td>
<td>28</td>
</tr>
<tr>
<td>1.160811</td>
<td>Manufacture of machinery and equipment n.e.c.</td>
<td>29</td>
</tr>
</tbody>
</table>
Manufacture of office, accounting and computing machinery

Manufacture of electrical machinery and apparatus n.e.c.

Manufacture of radio, television and communication equipment and apparatus

Manufacture of medical, precision and optical instruments, watches and clocks

Manufacture of motor vehicles, trailers and semi-trailers

Manufacture of other transport equipment

Manufacture of furniture; manufacturing n.e.c.

Recycling

4.2. How to Measure the Inefficiency

As we know, the best method for analyzing the performance of a monopolistic firm is measuring its efficiency and productivity. Determination of efficiency is related to definition and comparing it with an optimal and standard frontier, this standard frontier indicates maximum potential or actual power of the firm. This standard frontier is so called frontier production function which shows the frontier of minimum inputs in order to produce specific level of output at given technology level or maximum output which can be produced by given amount of inputs. The producers which act on production frontier are considered technically efficient and those located in below the frontier production function are inefficient. One method for obtaining frontier functions is the statistical parametric method known as Stochastic Frontier Analysis (SFA). In this method the difference between actual output and frontier output is obtained; in addition to technical inefficiency, the stochastic factor is also considered and is estimated using Maximum Likelihood Estimation (MLE).

One of the best measures of assessing the performance of an industry is evolution of frontier efficiency in industry presented by Battese and Coelli (1995). Battese and Coelli assume that the relation between inputs (X_{it}) and outputs (Q_{it}) can be approximated using production function

where i stands for firms and t stands for years. So, the production frontier corresponded to the best empirical function is defined as follow:
\[Q^F_{it} = f(x_{it}, t) \]

Where \(Q^F_{it} \) is Potential output level on production frontier in period \(t \) for firm \(i \) which is a continuous, strictly increasing and quasi-concave function and \(X_{it} \) is a \(k \) order vector of inputs. In order to estimate the stochastic frontier, one can define the stochastic component, \(v_{it} - u_{it} \), in production function and restate the production function as follows:

\[Q_{it} = f(X_{it}, t) \exp(v_{it} - u_{it}) \]

\(v_{it} - u_{it} \) is the combined error component where \(v_{it} \) is an stochastic variable indicates exogenous factors and random shocks and \(u_{it} \) is an stochastic variable shows endogenous factors and technical inefficiency of production which so called technical efficiency error. Generally, \(u_{it} \) is greater or equal to zero and it is assumed that is independent from stochastic error. Hence, in this research the technical efficiency of country's industry is measured using stochastic frontier function model which is based on Battese and Coelli model (1995).

\[Q_{it} = f(x_{it}, \beta) \exp(\epsilon_{it}) = f(x_{it}, \beta) \exp(v_{it} - u_{it}) \]

\[\epsilon_{it} = v_{it} - u_{it} \]

\[v_{it} \approx iid \ N(0, \sigma_v^2) \]

\[u_{it} \approx iid \left| N(m_{it}, \sigma_u^2) \right| \]

\[u_{it} \geq 0 \]

In above model, \(f(0) \) is suitable function form, \(y_{it} \) is the \(i \)th unit's output in the period \(t \) and \(x_{it} \) is the vector of production factors for \(i \)th unit in the period \(t \). the variables \(u_{it} \) and \(v_{it} \) indicate the amount of inefficiency and other statistical disturbances, respectively. \(u_{it} \) has normal distribution Interrupted in zero with a mean equal to \(m_{it} \). In this
model instead of variances σ_u^2 and σ_v^2, the two parameters of $\bar{\sigma}^2$ and γ which are equal to $\sigma_u^2 = \sigma_v^2 + \sigma_u^2$ and $\gamma = \sigma_v^2 / (\sigma_v^2 + \sigma_u^2)$, respectively, are replaced and estimated. The parameter γ, in fact, evaluate if inefficiency component is significant and its effect in model. This parameter is estimated in the iterative maximization process and takes a value between zero and one. In order to assess the performance, in this research we use the information of Shahiki and Nasiri (2011) which has applied the following Translog function for $Q_{it} = f(X_{it}, t)$:

$$
\ln Q_{it} = \alpha_0 + \alpha_1 \ln L_{it} + \alpha_k \ln K_{it} + \frac{1}{2} \beta_{L} \ln (\ln L_{it})^2 + \frac{1}{2} \beta_{K} \ln (\ln K_{it})^2 + \beta_{LK} \ln (\ln L_{it}) \ln (\ln K_{it}) + v_{it} + \alpha_t + \frac{1}{2} \beta_{\sigma} \sigma^2 + (\eta_{it} - \mu_{it})
$$

(39)

$$
v_{it} \equiv iid \ N(\alpha, \sigma_v^2)
$$

$$
u_{it} \equiv iid \ N(m_{it}, \sigma_u^2)
$$

$$u_{it} \geq 0
$$

It is notable that to quantify the technology index, in this research using the information related to Research and Development (R&D) costs, the number of expert labor forces (LL), and applying fuzzy approach, a combined index is considered to assess the technology which Q_{it} is corresponded to industry's value added. Also distribution related to "technical inefficiency effects" is a non-negative truncated normal distribution function with components of $N (m_{it}, \sigma_u^2)$. Level of technical efficiency of i-th firm in time t is obtained as the ratio of average output to potential average output as follows:

$$
TE_{it} = \frac{E(Q_{it} | u_{it}, L_{it}, K_{it})}{E(Q_{it}^F | L_{it}, K_{it})} = \exp \{- u_{it} \}
$$

(40)

According to TE relationship the assessment of industries' technical efficiency located at ISIC 2-digit code has been presented. As it mentioned before, the technical efficiency indicates a firm's ability in product maximization given specific production factors or, in other words, indicates the use of minimum inputs for producing a specific level of product.
Table 4: Estimating the Efficiency in Iranian Industries

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Industry</th>
<th>FK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.554273</td>
<td>Manufacture of food products and beverages</td>
<td>15</td>
</tr>
<tr>
<td>0.5375</td>
<td>Manufacture of tobacco products</td>
<td>16</td>
</tr>
<tr>
<td>0.44944</td>
<td>Manufacture of textiles</td>
<td>17</td>
</tr>
<tr>
<td>0.43605</td>
<td>Manufacture of wearing apparel; dressing and dyeing of fur</td>
<td>18</td>
</tr>
<tr>
<td>0.5165</td>
<td>Tanning and dressing of leather; manufacture of luggage, handbags, saddlery, harness and footwear</td>
<td>19</td>
</tr>
<tr>
<td>0.47496</td>
<td>Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials</td>
<td>20</td>
</tr>
<tr>
<td>0.5647</td>
<td>Manufacture of paper and paper products</td>
<td>21</td>
</tr>
<tr>
<td>0.40346</td>
<td>Publishing, printing and reproduction of recorded media</td>
<td>22</td>
</tr>
<tr>
<td>0.5921</td>
<td>Manufacture of coke, refined petroleum products and nuclear fuel</td>
<td>23</td>
</tr>
<tr>
<td>0.619011</td>
<td>Manufacture of chemicals and chemical products</td>
<td>24</td>
</tr>
<tr>
<td>0.5104</td>
<td>Manufacture of rubber and plastics products</td>
<td>25</td>
</tr>
<tr>
<td>0.47174</td>
<td>Manufacture of other non-metallic mineral products</td>
<td>26</td>
</tr>
<tr>
<td>0.60845</td>
<td>Manufacture of basic metals</td>
<td>27</td>
</tr>
<tr>
<td>0.496667</td>
<td>Manufacture of fabricated metal products, except machinery and equipment</td>
<td>28</td>
</tr>
<tr>
<td>0.515971</td>
<td>Manufacture of machinery and equipment n.e.c.</td>
<td>29</td>
</tr>
<tr>
<td>0.6016</td>
<td>Manufacture of office, accounting and computing machinery</td>
<td>30</td>
</tr>
<tr>
<td>0.545233</td>
<td>Manufacture of electrical machinery and apparatus n.e.c.</td>
<td>31</td>
</tr>
<tr>
<td>0.6121</td>
<td>Manufacture of radio, television and communication equipment and apparatus</td>
<td>32</td>
</tr>
<tr>
<td>0.51536</td>
<td>Manufacture of medical, precision and optical instruments, watches and clocks</td>
<td>33</td>
</tr>
<tr>
<td>0.590867</td>
<td>Manufacture of motor vehicles, trailers and semi-trailers</td>
<td>34</td>
</tr>
<tr>
<td>0.519167</td>
<td>Manufacture of other transport equipment</td>
<td>35</td>
</tr>
<tr>
<td>0.47268</td>
<td>Manufacture of furniture; manufacturing n.e.c.</td>
<td>36</td>
</tr>
<tr>
<td>0.4682</td>
<td>Recycling</td>
<td>37</td>
</tr>
</tbody>
</table>
4.3 How to Measure the Price Disturbance Component

One of the most important variables in this index is the price disturbance component. To measure the price disturbance component, in this paper the ratio of profit to sales has been used. This approach is like the approach of Harberger, Posner and Khodadad Kashi.

$$\frac{P - MC}{P} \approx \frac{\pi}{R}$$ \hspace{1cm} (41)

5. Measuring the Social Cost of Iranian Concentrated Industries

In this research in order to identify the monopoly industries in Iran, the concentration Index of Herfindahl-Hirschman (HHI) has been used. This index is the one of the important and applicable indexes for representing the concentration. The advantage of this index over the other indexes is that it considered the all points on the concentration curve, that is, this index uses the information of all firms of industry. In order to obtain this index the sum of squares of (output, sales, labor force, etc) share of all firms in industry or market is used. In other words, this index is obtained using the sum of squares of market share of firms or using the ratio of firm outputs to total output of the market's desired product. The above index can be measured as

$$H = \sum_{i=1}^{N} S_i^2$$, where, S_i is the market share of the ith firm and N is the number of firms in the industry. If the value of HHI be greater than (1800), the market will be concentrated.

<table>
<thead>
<tr>
<th>HHI</th>
<th>Industry</th>
<th>FK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.135238</td>
<td>Manufacture of food products and beverages</td>
<td>15</td>
</tr>
<tr>
<td>0.20354</td>
<td>Manufacture of tobacco products</td>
<td>16</td>
</tr>
<tr>
<td>0.197232</td>
<td>Manufacture of textiles</td>
<td>17</td>
</tr>
<tr>
<td>0.194486</td>
<td>Manufacture of wearing apparel; dressing and dyeing of fur</td>
<td>18</td>
</tr>
<tr>
<td>0.182419</td>
<td>Tanning and dressing of leather; manufacture of luggage, handbags, saddlery, harness and footwear</td>
<td></td>
</tr>
<tr>
<td>0.220835</td>
<td>Manufacture of wood and of products of wood and</td>
<td>19</td>
</tr>
<tr>
<td>HHI</td>
<td>Industry</td>
<td>FK</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>0.19727</td>
<td>Cork, except furniture; manufacture of articles of straw and plaiting materials</td>
<td></td>
</tr>
<tr>
<td>0.20053</td>
<td>Manufacture of paper and paper products</td>
<td>20</td>
</tr>
<tr>
<td>0.164625</td>
<td>Manufacture of coke, refined petroleum products and nuclear fuel</td>
<td>22</td>
</tr>
<tr>
<td>0.170907</td>
<td>Manufacture of chemicals and chemical products</td>
<td>23</td>
</tr>
<tr>
<td>0.168375</td>
<td>Manufacture of rubber and plastics products</td>
<td>24</td>
</tr>
<tr>
<td>0.17075</td>
<td>Manufacture of other non-metallic mineral products</td>
<td>25</td>
</tr>
<tr>
<td>0.162255</td>
<td>Manufacture of basic metals</td>
<td>26</td>
</tr>
<tr>
<td>0.167706</td>
<td>Manufacture of fabricated metal products, except machinery and equipment</td>
<td>27</td>
</tr>
<tr>
<td>0.19825</td>
<td>Manufacture of machinery and equipment n.e.c.</td>
<td>28</td>
</tr>
<tr>
<td>0.192502</td>
<td>Manufacture of office, accounting and computing machinery</td>
<td>29</td>
</tr>
<tr>
<td>0.189771</td>
<td>Manufacture of electrical machinery and apparatus n.e.c.</td>
<td>30</td>
</tr>
<tr>
<td>0.176336</td>
<td>Manufacture of radio, television and communication equipment and apparatus</td>
<td></td>
</tr>
<tr>
<td>0.214159</td>
<td>Manufacture of medical, precision and optical instruments, watches and clocks</td>
<td>32</td>
</tr>
<tr>
<td>0.191118</td>
<td>Manufacture of motor vehicles, trailers and semi-trailers</td>
<td>33</td>
</tr>
<tr>
<td>0.194505</td>
<td>Manufacture of other transport equipment</td>
<td>34</td>
</tr>
<tr>
<td>0.160761</td>
<td>Manufacture of furniture: manufacturing n.e.c.</td>
<td>35</td>
</tr>
<tr>
<td>0.166856</td>
<td>Recycling</td>
<td>36</td>
</tr>
</tbody>
</table>

Source: Current research

Because of using Leibenstain index for welfare cost evaluation, and due to the fact that in this index the oligopoly market is considered, we should select the industries which have a concentration index of higher (1800). Now, the central aim of discussion is to see how much welfare cost has been imposed on consumers in society due to concentrated structure in Iranian industrial sectors. Hence, considering the mentioned
information and using Leibenstain index, we evaluate W_L in Iranian concentrated industries.

Table 6: Evaluating Leibenstain Welfare Cost in Iranian Concentrated Industries

<table>
<thead>
<tr>
<th>Sale to social cost</th>
<th>Industry</th>
<th>FK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.019496</td>
<td>Manufacture of food products and beverages</td>
<td>15</td>
</tr>
<tr>
<td>0.104775</td>
<td>Manufacture of tobacco products</td>
<td>16</td>
</tr>
<tr>
<td>0.018155</td>
<td>Manufacture of textiles</td>
<td>17</td>
</tr>
<tr>
<td>0.009804</td>
<td>Manufacture of wearing apparel; dressing and dyeing of fur</td>
<td>18</td>
</tr>
<tr>
<td>0.001768</td>
<td>Tanning and dressing of leather; manufacture of luggage, handbags, saddlery, harness and footwear</td>
<td>19</td>
</tr>
<tr>
<td>0.022836</td>
<td>Manufacture of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting materials</td>
<td>20</td>
</tr>
<tr>
<td>0.022669</td>
<td>Manufacture of paper and paper products</td>
<td>21</td>
</tr>
<tr>
<td>0.027468</td>
<td>Publishing, printing and reproduction of recorded media</td>
<td>22</td>
</tr>
<tr>
<td>0.039509</td>
<td>Manufacture of coke, refined petroleum products and nuclear fuel</td>
<td>23</td>
</tr>
<tr>
<td>0.023196</td>
<td>Manufacture of chemicals and chemical products</td>
<td>24</td>
</tr>
<tr>
<td>0.022174</td>
<td>Manufacture of rubber and plastics products</td>
<td>25</td>
</tr>
<tr>
<td>0.024609</td>
<td>Manufacture of other non-metallic mineral products</td>
<td>26</td>
</tr>
<tr>
<td>0.022619</td>
<td>Manufacture of basic metals</td>
<td>27</td>
</tr>
<tr>
<td>0.031241</td>
<td>Manufacture of fabricated metal products, except machinery and equipment</td>
<td>28</td>
</tr>
<tr>
<td>0.021179</td>
<td>Manufacture of machinery and equipment n.e.c.</td>
<td>29</td>
</tr>
<tr>
<td>0.014921</td>
<td>Manufacture of office, accounting and computing machinery</td>
<td>30</td>
</tr>
<tr>
<td>0.027518</td>
<td>Manufacture of electrical machinery and apparatus n.e.c.</td>
<td>31</td>
</tr>
<tr>
<td>0.021124</td>
<td>Manufacture of radio, television and communication equipment and apparatus</td>
<td>32</td>
</tr>
<tr>
<td>0.041039</td>
<td>Manufacture of medical, precision and optical instruments, watches and clocks</td>
<td>33</td>
</tr>
</tbody>
</table>
As table(6) shows, the welfare cost has been shown as a percentage of sale and the highest welfare cost is related to Manufacture of tobacco products, Recycling, Manufacture of medical, precision and optical instruments, watches and clocks, Manufacture of coke, refined petroleum products and nuclear fuel, Manufacture of fabricated metal products, except machinery and equipment, which have created a welfare cost equal to 100/47, 54.701, 41.039, 39.509 and 31.241 percent of sales, respectively. In other words, as can be seen in the table (6) a welfare cost of about 24.01 percent of sales has been imposed on consumers in society by concentrated industries.

Table 7: Average Leibenstein Welfare Cost in Iranian Concentrated Industries

<table>
<thead>
<tr>
<th>Index</th>
<th>Average welfare cost in industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ratio of welfare cost to sales (percent)</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Source: Research findings

6. Summary and Conclusion

In order to organize government’s decisions and policies in the direction of increasing society welfare, awareness about the level of welfare loss due to non-optimal allocation of resources for consumers and other economic agents is essential. Hence, the main goal of this paper was to evaluate the social costs of effective monopoly in Iranian concentrated industries. There are two major views in investigating welfare effects of the performance in an industry. The first view assuming the efficient allocation of inputs in the production units (the existence of the x-efficiency) measures the difference between competitive and non-competitive production as well as price pressures of this difference (allocative inefficiency). According to this view, the welfare loss
resulting from non-competitive conditions is equal to the "welfare triangle" or "welfare triangle plus the economic rent." In the second view which was firstly introduced by Leibenstein (1966), the cost of non-competitive performance is considered over welfare triangle by addressing the concept of x-inefficiency. According to this view, in calculating the welfare cost of an industry’s performance, it is necessary that the inefficiency cost and allocative social cost of x-inefficiency be calculated simultaneously. It is believed that the monopoly industries operate inefficiently in many cases due to being in a safe margin. Hence, he believed that in addition to the welfare triangle, the costs of inefficiency of monopoly industries should be considered as the welfare cost. So, in order to measure social cost of welfare triangle and inefficiency in Iranian concentrated industries, in this study, the Leibenstein approach was used. Findings showed that the industries of Recycling, Manufacture of medical, precision and optical instruments, watches and clocks, Manufacture of coke, refined petroleum products and nuclear fuel, Manufacture of fabricated metal products, except machinery and equipment, have imposed highest welfare cost on society due to inefficiency and deadweight loss of welfare triangle; that is, they have created a welfare cost equal to 100.47, 54.701, 41.039, 39.509 and 31.241 percent of sales, respectively. Hence, in order to determine that the factors such as the severity of barrier to entry, concentration intensity, non-competitive behaviors and abuse dominant position to what extent have contributed in creating this welfare cost, the structural components of these industries should be identified by the competition council. Also, some policies should be adopted by this institution to increase competition in mentioned industries.

Endnote

1- International Standard of Industrial Classification.
References

