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Propensity score matching is extensively utilized in estimating the 

effects of policy interventions and programs for data observations. 

This method compares two treatment and control groups to make 
statistical inferences about the significance of the effects of these 

policies on target variables. Therefore, when using propensity 

score matching, it is significant to obtain the standard error to 
estimate the treatment effect. The precise estimations of variance 

and standard deviation facilitate more efficient statistical testing 

and more accurate confidence intervals. However, there is no 
agreement in the literature on the estimation method of standard 

error; some methods rely on resampling, while others do not. This 

study compares these methods using Monte Carlo simulation and 
calculating the Mean Squared Errors (MSE) of these estimators. 

Our results indicate that Jackknife and standard methods are 

superior to Abadie and Imbens (2006) bootstrap, and subsampling 
ones in terms of accuracy. Finally, reviewing Tayyebi et al. (2019) 

indicated that different methods of estimating variance in the 

matching estimator led to different statistical inferences in terms 
of statistical significance. 
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and programs for data observations. 

 There is no agreement in the literature upon the estimation method of standard error. 

 Our results indicate that Jackknife and standard methods are superior to Abadie and Imbens 
(2006) bootstrap, and subsampling ones in terms of accuracy. 
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1. Introduction 
Any study in the social sciences that aims to analyze the impact of a policy 

intervention requires the use of statistical tests to examine and analyze the results 

of its outputs. Since the units that are intervened may have different characteristics 

from people who are in control and out of the intervention in the implementation 

of statistical tests, the differences among these groups should be controlled to 

obtain a virtually neutral estimate of the effects desired. For instance, in the study 

of estimating the impact of changing the subsidy method, the impact of high-

income deciles may be very different from that of the low-income deciles which, 

due to a wide range of characteristics such as socioeconomic status and academic 

performance, are not even able to provide basic needs of life. It is vital to 

differentiate the effects of changing the subsidy method from the effects of 

previous differences between the "treatment" and "control" groups because 

without separating these concepts, it is not possible to have a valid estimate of the 

results of changing the subsidy method. These methods are known as program 

evaluation methods or policy evaluation. 

The method of evaluating the program determines the success or failure of 

policy interventions and the extent to which they affect the researcher can 

influence the future decisions of economic policymakers. One of the latest 

methods of program evaluation and analysis of causal effects is the matching 

method widely used in experiments based on observational studies1. The matching 

methods include a growing set of techniques that attempt to simulate random 

experiments when using observational data. In this method, the matching in 

question is repeated in a quasi-random experiment. This way, at first, sub-samples 

are selected from the treated and control groups that are only randomly different 

from each other in all variables observed. In using the matching method, for 

statistical inference and testing of the matching estimator, it is necessary to 

pinpoint the variance of this estimator. Due to the non-parametric nature of this 

method and the lack of a mathematically closed solution for the variance of the 

estimator, different methods have been proposed. These methods are divided into 

two groups of re-sampling and non-sampling: the first group includes Bootstrap, 

subsampling and Jackknife resampling methods, and the second group consists of 

standard methods and the Abadie-Imbens (AI) estimator. 

                                                 
1 In economic research, an observational study is a policy evaluation research in which the selection and 

allocation of individuals, firms and objects to be studied between the two groups of program (treatment) 

and control (control) is done without the intervention of the researcher. This method is different from the 
randomized experimental study method in which the researcher himself randomly classifies individuals 

between the experimental and control groups. In a completely randomized empirical study, a policy or 

corrective action is applied to a number of economic factors, households or individuals, and the effect of 
this policy action is observed on the units exposed to the program. In a randomized experiment, the 

researcher selects the individuals or entities being tested using a completely random method, such as tossing 

a coin, while in an observational study, the researcher observes the subjects or measures the variable without 
any intervention. It directly examines the subjects and observes and measures only as a third person and 

observer. The reason for using observational study versus experimental experiments is that in some cases 

it is not possible to retest an experiment. However, the common feature of both methods is that there are 
two groups of treatment and control in both of them (Keshavarz, 2018). 
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These methods have been proposed by econometrics researchers to calculate 

the variance of the matching estimator. For example, the AI estimator was 

emphasized by Abadie and Imbens (2006) and the Wild bootstrap by Otsu and 

Rai (2017). The nonparametric bootstrap was also considered by Lee (2005) and 

Cameron and Trivedi (2005) and the subset method by Abadie and Imbens (2008). 

Despite the introduction of different methods for estimating the variance of the 

matching estimator, no comprehensive research has been conducted to compare 

such methods. The purpose of this study is to draw a comparison through the 

examination of the characteristics of estimators. Therefore, the subject of this 

study is to evaluate the desirable properties of the variance estimator in each of 

the above-mentioned methods and then compare these characteristics across 

different methods. None of these methods would seem superior to the others; 

whether one specific method has the most desirable characteristics in each case 

depends on the situation and different matching methods. To evaluate the 

advantages of each sampling method (Bootstrap, subsampling, or Jackknife 

resampling methods) and non-sampling (standard and AI estimators), firstly, the 

desirable characteristics of the variance estimator must be identified. Secondly, it 

must be determined which characteristics are involved in this superiority, then, 

the method of discovering these characteristics is examined, and finally, different 

methods are compared with each other. 

In this study, we first review the literature and the theoretical foundations of 

these methods to introduce a matching estimator as well as the various methods 

used for estimating its standard deviation. Next, we run a data simulation to 

compare them. Finally, the results of the simulation are discussed.  

 

2. Literature Review 

The matching method has been used since the early twentieth century, but its 

theoretical foundations did not develop until the 1970s when Cochran and Rubin 

(1973) and Rubin (1992) investigated this method in terms of the treatment effects 

on the data in which there was only one covariate. 

Althauser and Rubin (1970) indicated that a larger control group would result 

in a better matching. Dealing with multiple explanatory variables (covariates) was 

a challenge that arose from the data problem and its comparison as well as the fact 

that it made it difficult to find matches that had overlapping values. For instance, 

Chapin (1947) reported that in a set of 671 people in the treatment group and 523 

people in the control group, only 23 pairs in six explanatory variables matched 

completely. Tremendous progress occurred in 1983 with defining propensity 

score, i.e. the probability of participating in the program (Rosenbaum & Rubin, 

1983). One of the most topics discussed in the field of matching is the estimation 

of the variance of the matching estimator. There is ongoing debate among 

researchers on how the uncertainty of the propensity score should be included in 

the estimation of variance (Stuart, 2010). Some researchers, such as Ho et al. 

(2007), proposed a method similar to randomized experiments, while others 

believe that the uncertainty considerations should be taken into account in the 
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calculations. In other words, some researchers, such as Rubin and Stuart (2006), 

show that using the estimated propensity scores instead of their real values can 

result in overestimation, which can, in turn, make the confidence intervals much 

larger than the actual values. This way, null-hypothesis will be accepted too often. 

Rubin and Thomas (1992) provided an analytical explanation of bias and variance 

reduction. Rubin and Thomas simulations and the examples of Hill et al. (2000) 

have confirmed these results. Due to the ineffectiveness of the standard methods 

used for variance estimation, the resampling methods, such as bootstrap were 

proposed (Lechner, 2002) 

Abadie and Imbens (2006) examined the variance of the matching estimator, 

where they used the nearest neighbor to study the variance of the treatment effect. 

They demonstrated that the variance of the average treatment effect estimator is 

typically estimated using the sample variance of the within-pair differences, but 

the variance of the average treatment effect estimator can be considerably smaller 

for this matching estimator. Therefore, they presented a method for estimating the 

variance of the treatment effect using the pairs-of-pairs method. In this method, 

each unit is matched with another one within its group, and then the average 

treatment is obtained with a series of variance transformations. Although their 

method for estimating variance did not estimate the compatibility of variance, the 

mean of this variance was consistent with the conditional variance of the treatment 

effect in order to lead to a valid confidence interval.  

Furthermore, the authors claimed that the results of the Monte Carlo 

simulation exhibited that their method was accurate even for small samples. First, 

they focused on the conditional variance of treatment effect rather than the 

variance of treatment effect, and secondly, they relied on the Monte Carlo 

simulation to prove their claim that the method worked even for small samples. 

In other words, this method involved two matches: one match to obtain treatment 

effect and another within-group match to obtain the variance of treatment effect. 

In another study by Abadie and Imbens (2008), the authors examined the 

usage of the bootstrap method to estimate the variance of the matching estimator. 

By introducing the matching method, they first used the nearest neighbor method 

with a fixed number of matches with replacement. Next, they used the bootstrap 

method to estimate the standard errors in an example and then revealed that this 

estimator is an inconsistent estimator for the real standard error of the matching 

estimator (τ ̂). This indicates the failure of bootstrap as considering the ratio of the 

people in the treatment group to the people in the control group (𝛼 =
𝑁1

𝑁0
); this 

method is an overestimation in a range of α and underestimation in another range. 

This is since each observation in the bootstrap method may be used more than 

once, and this is the reason for the consistency of the bootstrap method; whereas, 

if α decreases, i.e. the ratio of people in the treatment group to the people in the 

control group decreases, this bias will decrease. The alternative method 
introduced in this paper is the AI or subsampling method. 

Otsu and Rai (2017) introduced another method for estimating the variance 

of treatment effect. Considering the failure of bootstrap mentioned by Abadie and 
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Imbens (2008), the authors proposed wild bootstrap, originally introduced by Wu 

(1986) and Mammen (1993). The difference between this type of bootstrap and 

the one mentioned by Abadie and Imbens is that this method implements semi-

parametric bootstrap rather than its non-parametric counterpart as well as two 

defined values of  𝑢1
∗ and 𝑢2

∗ instead of 𝑢∗ of the bootstrap method. Their results 

indicated a consistent estimate of the variance of treatment effect which caused τ  ̂

to tend to the standard normal in the asymptotic distribution. The results obtained 

were confirmed by a simulation, which showed that this type of bootstrap could 

be used instead of its standard counterpart. 

Austin and Small (2014) examined using bootstrap to obtain the variance of 

treatment effect. Their matching method involved propensity scores and was 

without replacement. They proposed two bootstrap methods: first, bootstrapping 

and resampling the pairs matched through their propensity score (the pairs that 

were matched using propensity score were exposed to resampling) and second, 

bootstrapping and resampling on the original data, which was done once every 

time on the original data, and then these steps were further repeated using the 

propensity score. Their simulations showed that using bootstrap would lead to 

results very similar to the parametric approach in calculating the variance of 

treatment effect, and the simple estimation of the matching variance will lead to 

the largest overestimation. 

Pingel (2018) examined and analyzed several variance estimators of the 

matching estimator of the propensity score matching to estimate the average 

treatment effect (ATE) in which the role of smoothing parameters on the estimator 

variance of the matching is discussed. For this purpose, the criterion of mean 

squared error is used. His results indicated that the variance estimator proposed 

by Abadie and Imbens (2012) is effective in large samples. However, there are 

some caveats in using this estimator including  what R-package software 

introduced in the Psmatch packages in Stata software, special settings must be 

considered (Sekhon, 2007). Pingel (2018) examined from 5 to 15 matches in his 

review. Subsequently, through changing, there is no difference in his results. In 

addition, his findings showed that in small samples, the probability of the bias is 

higher in the variance estimator, i.e. the higher the sample size, the less likely 

there would be  bias and problems with the confidence interval. 

Austin and Cafri (2020) investigated the different variance estimators of the 

mating coefficient estimator using Monte Carlo simulations. They studied cases 

where the matching is a placement and the data is survival or time-to-event (TTE) 

outcomes. Their simulation results demonstrated that the matching estimator 

shows the results without bias of the average treatment effect. However, in 

examining the variance of this estimator in the usual method, there is a bias in 

some cases. Although they estimated the size of this bias to be less than 30%, 

estimating the variance is still a problem for over-estimating. When the 

prevalence of treatment is relatively low (30%), one should use a robust estimator 

that calculates intra-pair clustering, as this leads to the most accurate estimate of 

sampling variability is the log odds ratio. While, in case the prevalence of 
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treatment is high (e.g., 50%), the proposed variance should be preferred. It should 

be noted, however, that the first set in a low-prevalence setting is likely to be the 

one in which matching without placement is well performed and placement 

matching may not be necessary. 

Reviewing the literature reveals that despite the introduction of methods for 

calculating the variance of the matching estimator, comparisons between these 

methods have received less attention. This study aims to gather different methods 

used to obtain the variance of the matching estimator and then compare the 

robustness of the methods. 

 

3. SETUP 

3.1 Matching Method 

This study addresses the standard model. The goal is to evaluate the effect 

of a treatment method based on the data retrieved from the results, treatments, and 

auxiliary variables for the treated and untreated units. In general, the matching 

method determines the average effect of a binary treatment variable on an 

outcome variable (Y). For each unit 𝑖 =  1, … , 𝑛, there are two values of Y: 𝑌𝑖(1) 

when the unit participates in the program and 𝑌𝑖(0) when it does not. The variable 

𝑤𝑖 ∈ {0,1}, which indicates the participation of the unit in the program is defined 

as Equation 1: 

𝑌𝑖 = {
𝑌𝑖(0)                 𝑤𝑖 = 0

𝑌𝑖(1)                 𝑤𝑖 = 1
                                                                                (1) 

If 𝐸(𝑌1) − 𝐸(𝑌0) > 0, the program performed on the unit is effective. 

Equation 2 is used to determine the treatment effect on the entire population.  

𝐸(𝑌1 − 𝑌0) = 𝐸(𝑌1) − 𝐸(𝑌0)                                                                              (2) 

If individuals are distributed into treated and control groups randomly, this 

effect can be presented via Equation 3: 

𝜏 = 𝐸(𝑌|𝑤 = 1) − 𝐸(𝑌|𝑤 = 0) = 𝐸(𝑌1) − 𝐸(𝑌0)                                            (3) 

If individuals are not distributed randomly, other observable variables that 

affect the outcome variable (Y) should be identified and their effects should be 

controlled. To this purpose, one can choose to compare the groups where the 

variables have overlapping values, arising from k covariates of X:  

𝐸(𝑌|𝑥, 𝑤 = 1) − 𝐸(𝑌|𝑥, 𝑤 = 0) = 𝐸(𝑌1|𝑥, 𝑤 = 0) − 𝐸(𝑌0|𝑥, 𝑤 = 0) = 

= 𝐸(𝑌1|𝑥) − 𝐸(𝑌0|𝑥) = 𝐸(𝑌1 − 𝑌0|𝑥)                                                                  (4) 

In this case, conditional on given X, a random distribution, which is called 

selection on observables, is carried out (Lee, 2005). 

Assuming that participation in the program is independent of the outcome 

variable and that the probability of participating in the program for each given X 

is in the range of 0 and 1 (Hackman et al., 1998), the treatment effect can be 

presented via Equation 5: 

τ(𝑥) = 𝐸[𝑌(1) − 𝑌(0)|𝑿 = 𝒙] 
 = 𝐸[𝑌|𝑊 = 1, 𝑿 = 𝒙] − 𝐸[𝑌|𝑊 = 0, 𝑿 = 𝒙]                                                   (5) 



  Kamalian et al., Iranian Journal of Economic Studies, 9(1) 2020, 181-212 187 
 

In these conditions, the difference between the variables on the right-hand 

side of this equation for each X is detected. As a result, the average treatment 

effect can be determined by calculating 𝔼[𝑌|𝑊 = 1. 𝑋 = 𝑥] − 𝔼[𝑌|𝑊 = 0. 𝑋 =
𝑥] for all X values (Lee, 2005). The average treatment effect for a treated group 

is defined via Equation 6: 

𝜏 = 𝐸[𝜏(𝑋)] = 𝐸[𝐸[𝑌|𝑾 = 1, 𝑿 = 𝒙] − 𝐸[𝑌|𝑊 = 0, 𝑿 = 𝒙]]                        (6) 

One of the main challenges of program evaluation is whether only one of the 

variables of  𝑌𝑖(1) and 𝑌𝑖(0) (for the treatment and control groups, respectively) 

would be observable (Holland, 1986). In this regard, the potential unobservable 

outcome of each sample should be estimated (Stuart, 2010), in which the potential 

outcome of the program (𝑌𝑖(0)) in case of a relationship with the covariate X is 

considered as a variable exposed to the treatment. If the participation in treatment 

for units with the same covariates is completely random, the outcome variable of 

the control group can be used to estimate the potential outcome in case of non-

participation in the treatment program provided that the covariates overlap. This 

is the basis of the matching method (Keshavarz, 2018).  

As the matching of a large number of control variables leads to the decrease 

of the data overlapping and reduces the possibility of comparing the control and 

treatment groups, it is necessary to devise alternative methods for matching, one 

of which is using a propensity score that is drawn from control variables 

(Rosenbaum & Rubin, 1983). In propensity score matching, when the vector 

dimensions of the control variables are so large that the assumption of the data 

overlap is difficult, a logit or probit estimation is first fitted to the vector of the 

control variables, and then the probability of participating in the program for each 

unit is obtained. Finally, data matching is carried out using this propensity score 

(Cameron & Trivedi, 2005). In the propensity score approach, matching can be 

performed using four methods, namely nearest neighbor, caliper and radius, 

stratification and interval, and kernel (Becker & Ichino, 2002). In other words, we 

have: 

𝑦0, 𝑦1 ⊥ 𝑊|𝑥  →   𝑦0, 𝑦1 ⊥ 𝑊|𝑝(𝑥)                                                                    (7) 

The assumption of conditional independence under given x also includes the 

assumption of conditional independence under given p(x). In this regard, we have: 

𝑃𝑟[𝑊 = 1|𝑦0, 𝑦1, 𝑝(𝑥)] = 𝐸[𝑊|𝑦0, 𝑦1, 𝑝(𝑥)] 
 = 𝐸[𝐸[𝑊|𝑦0, 𝑦1, 𝑝(𝑥), 𝑥]|𝑦0, 𝑦1, 𝑝(𝑥)] 
 = 𝐸[𝐸[𝑊|𝑦0, 𝑦1, 𝑥]|𝑦0, 𝑦1, 𝑝(𝑥)] 
 = 𝐸[𝐸[𝑊|𝑥]|𝑦0, 𝑦1, 𝑝(𝑥)]           
 = 𝑝(𝑥)                                                                                                                (8) 

The method of the nearest neighbor is commonly implemented in the 

matching method using observable variables. To achieve this, each unit i in the 

treatment group is matched with unit j of the control group provided that the 

values of the explanatory variables of these two units are nearest to each other. In 

this case, their subtraction and average are assigned to the outcome variable and 
treatment effects, respectively. If each data can be matched only once, the 
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matching is without replacement, and if it can be matched more than once, it is 

called “matching with replacement” (Abadie & Imbens, 2011). 

In matching the nearest neighbor for each unit i in the treatment group, D is 

the distance between the value of the explanatory variables of the ith unit and the 

value of the explanatory variables of the closest match in the control group. 

𝐷𝑖 = 𝑚𝑖𝑛‖𝑋𝑖 − 𝑋𝑗‖                              𝑗 = 1, … , 𝑛: 𝑊𝑗 = 0                                                  (9) 

In case of n-matched units: 

𝜁(𝑖) = {𝑗 ∈ {1,2, … , 𝑛}: 𝑊𝑗 = 0, ‖𝑋𝑖 − 𝑋𝑗‖ = 𝐷𝑗}                                           (10)                                     

ζ (i) is the set of the matched units for the i-th unit (when i is in the control 

group, the set ζ(i) will be empty). Thus: 

�̂�𝑖(0) =
1

#𝜁(𝑖)
∑ 𝑌𝑖𝑗𝜖𝜁(𝑖)                                                                                         (11) 

In this case, the matching estimator of the treatment effect is defined as 

Equation 12: 

�̂� =
1

𝑛1
∑ [𝑌𝑖 − �̂�𝑖(0)]𝑖:𝑊𝑖=1                                                                                  (12) 

To test the treatment effect, it is necessary to obtain variance after estimating 

the average within-paired effects. The following methods are suggested for this 

purpose: 

 

3.2 Methods of Variance Estimation 

1) Methods not based on resampling 

a) Common Standard Error: This is obtained using the usual method of 

calculating the mean difference (between the treatment and control groups) with 

the weight observed by the weights on consistent data matched. Note that the 

standard error presented in this method does not take into account the uncertainty 

of the matching method. 

b) AI method (Abadie & Imbens, 2006): In this method, an estimator is 

proposed for variance in Equation 13: 

�̂�𝐴𝐼 =
1

𝑁2
1 ∑ (𝑌𝑖 − �̂�𝑖(0) − �̂�)

2𝑁
𝑖=1 +

1

𝑁2
1 ∑ (𝐾𝑖

2 − 𝐾𝑠𝑞.𝑖)�̂�2(𝑋𝑖. 𝑊𝑖)𝑁
𝑖=1                      (13) 

where �̂�2(𝑋𝑖. 𝑊𝑖) is the conditional variance estimator of the outcome 

variable 𝑌𝑖 in given 𝑋𝑖 and 𝑊𝑖 based on matching where each variable will be 

matched with the closest explanatory variables within the group: 

𝐾𝑖 = {
0                                 𝑊𝑖 = 1

∑ 1{𝑖 ∈ 𝜁(𝑗)}
1

𝜁(𝑗)𝑊𝑗=1         𝑊𝑖 = 0                                                         (14) 

𝐾𝑠𝑞.𝑖 = {
0                                            𝑊𝑖 = 1

∑ 1{𝑖 ∈ 𝜁(𝑗)}
1

𝜁(𝑗)

2

𝑊𝑗=1      𝑊𝑖 = 0
                                                      (15) 

2) Methods based on Resampling: 

a) Bootstrap: The bootstrap algorithm is similar to the Monte Carlo 

simulation, except that in the latter, the random sample is extracted from a 

distribution given with known parameters, such as a normal distribution, but in 

the bootstrap, random samples are derived from the empirical distribution 
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function (EDF). Another difference is that this method is based on the principle 

of replacement, according to which, the empirical distribution function based on 

an observed sample is the best estimation of the theoretical distribution function 

in a non-parametric analysis.  

Efron (1992) originally proposed the basis of the bootstrap method and stated 

that the observed data set is a random sample with size N, derived from the 

theoretical distribution function; in other words, the empirical distribution 

function of data is the best estimate of the theoretical distribution function of the 

data. The empirical distribution function is defined as a discrete distribution in 

which the probability of occurrence of each of the observed values is equal to 1/n. 

Hence, the empirical distribution is formed through a random variable rather than 

a predetermined distribution such as the normal distribution.  

Thus, a bootstrap sample is a random sample 𝑋1
∗, 𝑋2

∗, … , 𝑋𝑛
∗  which is obtained 

through replacement and placing the probability of 1/n for each of the values 

observed. The steps of using the bootstrap method are as follows: 1) From the 

given sample w1,...,wn, a bootstrap sample with size n is derived. This new sample 

is denoted by 𝑊1
∗, 𝑊2

∗, … , 𝑊𝑛
∗. 2) A suitable statistic that uses a bootstrap sample 

is calculated. This step includes a) estimation of 𝜃∗ from𝜃, b) the standard error 

of 𝑠�̂�∗ from 𝜃∗, c) statistic 𝑡∗ = (𝜃∗ − 𝜃) 𝑠�̂�∗  ⁄ that is distributed around the main 

estimate 𝜃. Here, 𝜃∗ and 𝑠�̂�∗ are calculated in the usual way, but using the 

bootstrap sample rather than the original one. 3) Independent repetition of steps 1 

and 2 for B times, where B is a large number of the bootstrap iterations of the 

desired statistic, such as 𝜃∗
1. . . 𝜃∗

𝐵 or 𝑡1
∗. . . 𝑡𝐵

∗ . 4). This repetition for B times is 

used to calculate the distribution of the bootstrap statistics, such as τ. The simplest 

way to bootstrap is to use an empirical data distribution that considers the sample 

as the entire population. Then, 𝑊1
∗, 𝑊2

∗, … , 𝑊𝑛
∗ are obtained through sampling 

with the replacement of w1,...,wn. In each of the bootstrap samples obtained, some 

original data are repeated several times, while some data do not exist at all. This 

method is called the Empirical Distribution Function (EDF) or non-parametric 

bootstrap.  

𝑠�̂�𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝[𝜃] = [
1

𝐵−1
∑ (𝜃(𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝) − 𝜃𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝

̂̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝐵
𝑖=1 ]

1
2⁄

                            (16) 

b) Subsampling Method: The subsampling method implements subsamples 

with size m that are much smaller than the original sample (N). These subsamples 

can be selected with or without replacement (Politis & Romano, 1994).  

The subsample with replacement provides subsets which are random 

samples of the population rather than using a random sample distribution estimate, 

and this is similar to that of the bootstrap. Subset bootstrap is used when a 

complete bootstrap sample is  invalid or when it is used as a validation of a 

complete bootstrap sample. Results vary by selecting different sizes of subsets 

(Cameron & Trivedi, 2005). 

𝑠�̂�𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒[𝜃] = [
1

𝑆𝐵−1
∑ (𝜃(𝜁(𝑖)) − 𝜃𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

̂̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

𝑆𝐵
𝑖=1 ]

1
2⁄

                                (17) 
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c) Jackknife Method: An alternative method to bootstrap resampling is the 

Jackknife method discussed earlier. Jackknife is derived from N deterministic 

subsets from the original data with size N-1, which are used by separating each of 

the n observations and recalculating the estimators. Consider the estimator 𝜃 from 

the parameter vector θ that is based on a sample with size N. For i = 1, ... , N, 

sequentially delete the i-th observation and perform N Jackknife repetitions of 

estimator 𝜃 from N resampling (sample size of N-1). The unbiasedness estimation 

of Jackknife from 𝜃 is equal to  (𝑁 − 1) (�̅� − 𝜃), where �̅� = 𝑁−1 ∑ 𝜃(−𝑖)𝑖  is 

called the average n repetition of Jackknife from 𝜃(−𝑖). The unbiasedness appears 

to be large as it is multiplied by n-1, but the difference (𝜃(−𝑖) − 𝜃) is much smaller 

than that of the bootstrap, because in Jackknife resampling, the difference between 

a new sample and the original one is just one observation. 

Jackknife is considered as a solution for a wide range of statistics. In 

particular, Jackknife's estimate of the standard deviation of estimator 𝜃 is equal to 

Equation 18: 

𝑠�̂�𝐽𝑎𝑐𝑘[𝜃] = [
𝑁−1

𝑁
∑ (𝜃(−𝑖) − �̅�)

2
𝑛
𝑖=1 ]

1
2⁄

                                                            (18) 

It seems that Jackknife is a linear approximation of bootstrap (Tibshirani & 

Efron, 1993). In small samples where N<B2, Jackknife involves fewer 

calculations, but when 𝐵 → ∞, the performance of the bootstrap will improve.  

Each of these methods has been proposed by econometricians to calculate 

the variance of the matching estimator. For example, the AI method and wild 

bootstrap were introduced by Abadie and Imbens (2006) and Otsu and Rai (2017), 

respectively. Furthermore, non-parametric bootstrap was introduced by Lee 

(2005), Cameron and Trivedi (2005), while the subset method was proposed by 

Abadie and Imbens (2008). According to these studies, however, no 

comprehensive research has been conducted to compare these methods. This 

study thus aims to carry out such comparison has and opt for mean squared error 

(MSE) as its criterion.  

 

4. Methodology 

4.1 An Introduction to Simulation 

There are two methods to explore the validity of statistical tests: 1) 

theoretical proof, 2) performing simulations. For statistics that are based on 

resampling, simulation methods are often preferred due to the complexity of 

theoretical proofs (in some cases they can also lead to no results). Simulation is a 

branch of science that uses artificial experiments which are very similar to their 

real-world counterparts to answer real-world questions. This method is used in 

the modelling of physics, cosmology, chemistry, meteorology, biology, 

economics and social and engineering sciences. In terms of models, computer 

                                                 
2 B is the repetition number of the bootstrap method. 
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simulations can be classified based on different perspectives, namely stochastic 

or deterministic3, static or dynamic4, continuous or discrete5, and local or 

distributed. In sum, simulation denotes the visualization of something about 

which sensory information is not available, and it uses a fictitious environment 

and related theoretical model to estimate the behavior of a real-world system. 

One of the most widely utilized simulation methods is the Monte Carlo 

simulation method or the Monte Carlo algorithm, which is a class of 

computational algorithms based on the repetition of random samples. This method 

is substantially used for solving non-random equations of physical, mathematical 

and statistical systems as well as confirming the solution of analytical methods. 

Simulation is a virtual representation of reality6. The Monte Carlo method is 

reliable for solving mathematical and statistical problems. The Monte Carlo 

simulation implements repetitive sampling to determine the characteristics of 

some phenomena. Despite some variations, this method usually involves the 

following steps: 1) Defining the domain of possible inputs; 2) Random generating 

inputs according to a probability distribution over the domain; 3) Applying 

theoretical and deterministic operations on inputs; and 4) Collecting the results. 

 

4.2 Monte Carlo Simulation 
In this study, the Monte Carlo simulation is utilized to obtain the mean 

asymptotic standard error of various methods used for variance estimation to 

estimate the variations of treatment effect through propensity score matching. Its 

outputs are considered to be continuous.  

 

4.3 Data Generation Process 

 The data are based on an environment of 10 covariates (X1,…,X10), which 

are simulated from the independent standard normal distribution. Some of these 

variables affect the participation probability; while some affect the outcome 

                                                 
3 A deterministic simulation model consists only of deterministic (not stochastic) components, in which, all 

the mathematical and logical relations between items (variables) are fixed and not exposed to uncertainty. 

A typical example of a deterministic simulation model is a complicated (and analytically intractable) system 
of differential equations describing a chemical reaction. In contrast, a model with at least one random input 

variable is a random model. Most queuing and inventory systems are modelled stochastically. 
4 Static models are not exposed to change over time, and therefore, do not convey the passage of time, while 

a dynamic simulation model represents a system as it evolves over time (for example, the performance of 

a traffic light). 
5 In discrete simulations, the state variables change instantaneously at separated points in time. The 

mathematical models used for calculating the numerical answers for a set of differential equations is an 

example of a continuous simulation, while the queuing models are examples of discrete simulations. 
6 The Monte Carlo method can also be explained according to the definition of Banks and Carson: Monte 

Carlo method uses random numbers to solve non-stochastic problems or some other stochastic ones where 

time has no major role. Random numbers in this definition refers to independent random variables with a 
uniform statistical distribution in the range of [0,1]. According to this definition, Monte Carlo method is 

considered as a static method rather than a dynamic one. This does not apply to the Monte Carlo simulation 

whose only similarity to the Monte Carlo method is the use of random numbers. In fact, the time factor is 
involved in the simulation; i.e. the simulation is a dynamic method. 
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variable. These variables influence the program selection or outcome variable to 

different degrees: weak, moderate, strong, or very strong. 

For each item, the probability of program selection is determined by the 

following logistic model: 

log 𝑖𝑡(𝑝𝑖) = 𝛼0,𝑡𝑟𝑒𝑎𝑡 + 𝛼𝑤𝑥1 + 𝛼𝑀𝑥2 + 𝛼𝑆𝑥3 + 𝛼𝑤𝑥4 + 𝛼𝑀𝑥5 

+𝛼𝑆𝑥6 + 𝛼𝑉𝑆𝑥7                                                                                                    (19) 

The constant term for the model selection (𝛼0,𝑡𝑟𝑒𝑎𝑡) is an item proportional to the 

treatment effect in the simulated samples of the program. The regression 

coefficients 𝛼𝑉𝑆, 𝛼𝑆, 𝛼𝑀 , 𝛼𝑊, is the set of log(0.01), log(0.25), log(0.5), log(0.8). 

These numbers are chosen such that the selected effect will be weak, medium, 

strong and very strong. For each item, the program state is generated from the 

Bernoulli distribution with the parameter pi 𝑍𝑖~𝐵𝑒(𝑝𝑖). Finally, the outcome 

variable is produced by a linear relationship among the variables that affect the 

outcome variable and using the treatment effect obtained with Bernoulli's output. 

In the simulation of the outcome variable, the error term with normal distribution 

is used. The process starts with 100 data, and 30 data are added to the simulation 

in every series. The bootstrap, Jackknife and subsampling methods are also 

repeated 1000 times unless the sample size is small, in each case, the maximum 

possible number of repetitions has been performed. 

 

4.4 Simulation Results 
Considering the asymptotic investigation of mean squared error in this study, 

the sample size starts with 130 and ends in 1000. The periods are presented in 

Table 1. 
 

 

Table 1. Results of Mean Squared Error 

 N=130 N=550 N=700 N=850 N=1000 

M=1 

MSE)AI( 500.8100998 251.6042997 320.8182815 276.232176 359.3028633 

MSE)NORM( 0.486505001 0.028412348 0.016482093 0.020581401 0.016929846 

MSE)bootstrap( 701.0831262 222.7023287 448.0167965 347.2546649 1794.136113 

MSE)jackknife( 36.53862128 0.026731482 0.000772705 0.002689886 0.012201001 

MSE)moutofn( 807.5742217 1785.628421 1917.263219 1570.961438 2085.182374 

M=2 

MSE)AI( 483.5759725 153.6618816 130.0815033 114.9749764 68.67815456 

MSE)NORM( 2.537876126 0.041212902 0.024879217 0.022771289 0.008739926 

MSE)bootstrap( 474.7539165 108.5377164 153.1516715 68.39050707 17.34399815 

MSE)jackknife( 22.98551485 0.005465036 0.000216443 0.000260086 0.000300102 

MSE)moutofn( 280.1948388 524.5128277 363.0121975 512.1124617 373.7873398 
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Table 1 (Continued). Results of Mean Squared Error 

 N=130 N=550 N=700 N=850 N=1000 
 

M=3 

MSE)AI( 248.5297026 123.2876588 45.08985479 54.6881585 153.8657165 

MSE)NORM( 3.431057022 0.067272708 0.021911503 0.019458713 0.035104951 

MSE)bootstrap( 336.4494912 132.8650925 116.2256058 186.4969325 227.5139889 

MSE)jackknife( 1.108353293 0.288799861 0.001420443 0.034295835 0.000208132 

MSE)moutofn( 141.8771906 180.0236714 266.7967234 225.571591 277.8710203 

M=4 

MSE)AI( 70.22433792 37.88330743 26.27894386 44.89214356 31.00458324 

MSE)NORM( 1.185585967 0.034149579 0.02011709 0.027771789 0.012669206 

MSE)bootstrap( 72.86821334 20.25199681 15.69573467 104.136727 22.53560794 

MSE)jackknife( 0.016678995 0.009779622 2.84946E-05 9.89E-05 1.10E-05 

MSE)moutofn( 80.90357222 102.3407322 96.34481076 118.8029588 141.5917367 

M=5 

MSE)AI( 35.6585449 24.75062024 34.53372145 21.94513073 47.09603191 

MSE)NORM( 1.019225971 0.035276015 0.028486752 0.021262261 0.033099209 

MSE)bootstrap( 92.45200067 36.05028064 71.80630725 23.44849666 122.6722605 

MSE)jackknife( 0.019011204 0.065037417 0.063169732 6.06E-06 4.60E-05 

MSE)moutofn( 70.74899017 84.7591145 76.6647025 70.35170284 107.2703018 

Source: Authors 

 

To facilitate comprehension, a simpler presentation of the results is depicted 

in Fig.   
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Figure 1. Results of Mean Squared Error 

 

Table 1 and Figure 1 show the analyses of MSE values. For each of the five 

Standard and AI, Bootstrap, Jackknife and subsampling, the MSE values are 

investigated. This study is accompanied by an increase in the sample size from 

sample size (130) to 1000. In other words, MSE is examined asymptotically. 

Moreover, initially, the number of matches for each observation in the treatment 

group was one, which i increased to 5. This takes into account the effect of 

increasing the sample size along with the effect of increasing the number of 

matches on the average squares of the error with each other, hence, more robust 

results. Increasing the number of matches can lead to stronger conclusions when 

the number of people in the control group is much higher than the number of 

people in the treatment group. In all these cases, the average square error in the 

standard method and Jack Knife method was less than other three AI, Bootstrap 

and subsampling methods, which indicates that these two methods are more 

efficient than other methods. It was more efficient in that it was present at all 

levels of sample sizing. In other words, these two methods were superior to other 

methods in small samples, as well as in large samples, although the MSE in all 

methods decreases with increasing sample size. It indicates the compatibility of 
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these methods. However, despite such a reduction, the standard and Jackknife 

methods are still more efficient than the AI, subsampling and Bootstrap methods. 

Given that SME is the sum of the squared bias and variance of the estimator, it 

can be claimed about the Jackknife method that the variance of this method is less 

than others’. This reduction in variance is because this method is more effective 

than other types of representations. In other words, using the Jackknife method 

minimizes the estimator variance regarding the actual value of the population. 

This reduction in variance is also because new samples obtained from the 

sampling are not fundamentally different from the original sample. This 

advantage reduces the variance of the estimators calculated by the Jackknife 

method. In addition, the use of the Jackknife and subsampling methods in which 

there is no repetitive observation of the original sample will reduce the bias caused 

by repetition, which was addressed in the Abadi-Imbens study where these two 

methods are compared to the bootstrap method. However, since the deletion of 

each observation causes the loss of the information obtained from it, the 

superiority of the Jackknife over the subsampling method is also evident for the 

number of observations deleted in the Jackknife method as minimum. 

An empirical example is provided. In the continuation of the discussion and 

to express the issue that the use of different methods of estimating variance in the 

matching estimator causes differences in the significance of treatment, an 

empirical example is given. In this section, only the significant difference has 

been considered using different methods of estimating variance, and from 

experimental examples, no reason can be deduced from the advantage of any 

method. Tayyebi et al. (2019)7 investigated the impact of globalization on 

government budget deficit using the matching method for modelling. To this end, 

the government debt and participation in the Organization for Economic Co-

operation and Development (OECD) were considered as an outcome variable and 

a treatment variable, respectively. The matching variables were per capita 

production based on purchasing power, inflation, unemployment and trade 

liberalization index. The standard deviation in this study was obtained using the 

Abadie-Imbens method. The results indicated that the treatment variable 

(globalization) had a significant effect on the budget deficit of governments and 

increased them. They used the data from this research to re-estimate the standard 

deviation (by the five aforementioned methods) as well as the treatment effect. 

The results are represented in Table 2. 

 

 

 

 

 

 

                                                 
7 The aim of reviewing Tayyebi et al. (2019) was simply to point out that the use of different methods of 

estimating variance leads to different results in rejecting or accepting the null hypothesis. So, no reference 
was made on the appropriateness of any method (and its data) in the present paper.  
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Table 2. Results of hypothesis testing using various methods of variance estimation 

 
Treatment 

Effect 

Standard 

Deviation 

Statistic 

t 

The 

Critical 

Value 

of 5% 

Result 

Standard 

method 

31.2014 

11.3137 2.7578 

1.96 

Null-

hypothesis 

is rejected. 

Abadie-

Imbens 

method 

20.3224 1.5353 

Null-

hypothesis 

is accepted. 

Bootstrap 

method 
12.8062 2.4364 

Null-

hypothesis 

is rejected. 

Jackknife 

method 
1.7146 18.1974 

Null-

hypothesis 

is rejected. 

Subsampling 

method 
31.9530 0.9764 

Null-

hypothesis 

is accepted. 
  Source: Authors 

 
The results of Table 2 indicate that different methods used to estimate the 

standard deviation results in a change in the significance of the treatment variable 

as bootstrap and Jackknife methods render the treatment variable significant, 

while the use of Abadie-Imbens and subsampling methods makes it insignificant. 

 

5. Conclusion 

Estimating variance is controversial in the matching literature. Authors are 

mostly uncertain in computing either a propensity score or a matching method.  

Some researchers opt for a method similar to random experiments where models 

run conditionally on the auxiliary variables that are given as exogenous. In such 

conditions, the uncertainty related to the matching process is not taken into 

consideration. Other researchers state that analysis should consider uncertainty in 

propensity score estimation. Nevertheless, in practice, using estimated propensity 

scores instead of their real counterparts can lead to the overestimation of variance. 

Among the proposed methods, researchers have mostly focused on the methods 

based on resampling due to their simplicity and lack of necessity to estimate the 

distribution of the sample and population. Due to the non-parametric distribution 

of treatment statistics, it is not possible to find out the efficiency of and 

comparison among these methods. Therefore, the use of the simulation approach 

can be an appropriate indicator for comparing these methods. This study thus 

conducted a comparison between simulation methods using Monte Carlo 

simulation method. To this purpose, we calculated the mean squared errors of the 

estimated statistic, the results of which indicated that the mean squared errors of 

the bootstrapping, Jackknife, normal and Abadie-Imbens methods were 
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asymptotically zero. It was revealed that the normal and Jackknife methods had 

distinctively smaller mean squared errors, and their superiority was more 

pronounced for the models with small volume samples.   
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Appendices 
This section focuses on different simulation parameters that were 

transformed to examine and compare the results of MSE in different cases. The 

results indicate that changing the simulation parameters did not affect the study 

results.  

Simulating the data and calculating MSE asymptotically in the beta.low 

coefficient change mode:  

In this section, by changing the beta.low rate, its effect on the efficiency of 

variance estimation methods are investigated and MSE is examined 

asymptotically. The sample size starts from 100 and ends in 1100. The following 

table presents the results: 

 
Table 1. MSE results by changing the variance of the treatment variable 

 N=100 N=550 N=700 N=850 N=1000 

beta.low=log(0.01) 

MSE)AI( 851.7977 314.1532 104.8148 167.638 45.03238 

MSE)NORM( 8.04999 0.510176 0.084299 0.098655 0.023863 

MSE)bootstrap( 2422.222 301.4295 195.6385 213.3705 20.18511 

MSE)jackknife( 1.364211 6.513935 0.000607 0.001576 3.03E-05 

MSE)moutofn( 745.0608 231.4278 280.2235 216.2965 188.1768 

beta.low=log(0.02) 

MSE)AI( 285.2486 45.43468 38.65057 33.33802 36.67987 

MSE)NORM( 2.065475 0.068533 0.031761 0.021943 0.017977 

MSE)bootstrap( 327.8553 24.02514 57.64277 28.47822 57.85447 

MSE)jackknife( 4.305075 0.314528 0.001251 0.000833 0.127796 

MSE)moutofn( 184.0575 111.1654 145.3705 153.0183 131.6835 

beta.low=log(0.05) 

MSE)AI( 65.85022 24.81357 32.80268 22.0278 18.93307 

MSE)NORM( 0.453846 0.085154 0.015974 0.012467 0.008345 

MSE)bootstrap( 51.53285 31.14083 28.00153 18.85829 30.46188 

MSE)jackknife( 0.240732 0.000298 0.003814 0.000141 5.08E-05 

MSE)moutofn( 49.95104 71.23848 89.44665 103.0268 85.09032 

beta.low=log(0.10) 

MSE)AI( 33.84705 13.23577 10.34922 5.921596 15.99651 

MSE)NORM( 0.233514 0.022379 0.009921 0.008623 0.009209 

MSE)bootstrap( 40.59844 15.85387 8.401672 7.180093 42.48825 

MSE)jackknife( 0.396901 0.010328 1.51E-05 3.26E-05 0.000119 

MSE)moutofn( 44.42195 62.06096 53.49309 44.86089 57.25824 
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Table 1 (Continued). SME results by changing the variance 

 of the treatment variable 

beta.low=log(0.20) 

MSE)AI( 23.82313 5.479099 5.982962 4.815908 3.390019 

MSE)NORM( 0.119289 0.015145 0.005177 0.005899 0.002842 

MSE)bootstrap( 24.69075 5.603212 9.401162 8.27036 4.886883 

MSE)jackknife( 0.105251 6.38E-05 4.28E-05 4.57E-05 0.004882 

MSE)moutofn( 30.41826 40.39463 31.04247 37.49696 44.16853 

Source: Research findings 

 

 
 

Figure 1. Graphs of the MSE results with the variance of the treatment variable 
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As the results in the above table and diagram shows, the MSE in the 

Bootstrap, Standard, AI, Jackknife, and Subsampling methods are decreasing 

asymptotically. Among these methods, the MSE for the Standard and the 

Jackknife method are lower, indicating their advantage over other methods. 

 

Simulating the data and calculating MSE asymptotically in case of the 

variance of treatment variance 

In this section, by changing the true variance of the treatment variable, its 

effect on the efficiency of variance estimation methods is investigated and MSE 

is asymptotically examined. The sample size starts from 50 and ends at 1100. The 

following table presents the results: 

 
Table 2. MSE results by changing the variance of the treatment variable 

 N=50 N=250 N=450 N=650 N=1100 

Var=1 

MSE)AI( 377.0785 333.5097 128.879 171.2781 152.9716 

MSE)NORM( 2.009331 0.26015 0.039859 0.018519 0.012475 

MSE)bootstrap( 450.4136 693.1792 92.82319 194.4715 39.69625 

MSE)jackknife( 1.056548 0.608237 0.003224 0.013243 0.001067 

MSE)moutofn( 0.001222 890.7482 1388.192 999.9874 1157.497 

Var=3 

MSE)AI( 485.6425 508.6827 207.9898 303.2482 353.3888 

MSE)NORM( 2.155842 0.148902 0.042301 0.022891 0.02288 

MSE)bootstrap( 1805.274 958.2828 129.7413 154.2267 91.86069 

MSE)jackknife( 7.441926 0.471797 0.030791 0.007423 0.003128 

MSE)moutofn( 0.032443 1515.68 636.2644 1751.966 945.0743 

Var=5 

MSE)AI( 1247.2 1446.203 802.0943 347.5849 822.8534 

MSE)NORM( 4.371456 0.37527 0.108614 0.07356 0.051176 

MSE)bootstrap( 2308.827 4312.976 725.8821 299.3553 899.2683 

MSE)jackknife( 24.59164 560.8169 91.32544 0.001845 0.021144 

MSE)moutofn( 0.030104 4607.964 2563.797 3388.587 1924.086 

Var=8 

MSE)AI( 2331.255 1750.589 1079.18 2737.275 1149.558 

MSE)NORM( 9.789377 0.389284 0.27377 0.20159 0.089751 

MSE)bootstrap( 3128.942 1601.634 1174.216 1390.685 632.5505 

MSE)jackknife( 8.172749 0.15351 0.042169 0.12584 0.010748 

MSE)moutofn( 0.087618 4904.871 10472.18 9851.1 6172.71 

Var=10 

MSE)AI( 8561.868 4053.145 3872.348 1890.971 2578.118 

MSE)NORM( 34.74394 1.229395 0.458182 0.315959 0.245034 

MSE)bootstrap( 20226.44 4174.795 4291.435 1231.555 2880.444 

MSE)jackknife( 184.5844 1.064264 0.275863 0.059269 0.138363 

MSE)moutofn( 0.224664 10725.46 12801.79 15405.78 11811.97 
Source: Research findings 

 

For better understanding, the simulation results are also shown graphically 

as follows.  
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Figure 2. Diagrams of the results of the mean squares of error with  

the variance of the variable treatment 

 

As can be seen from the results in the table and diagram above, MSE in the 

Bootstrap, Standard, AI, Jackknife, and Subsampling methods are decreasing 

asymptotically. Among these methods, MSE for the Standard and Jackknife 

methods are lower, indicating their advantage over other methods. 

Simulating the data and calculating MSE asymptotically in case of changing 

the number of observations deleted in the following sample method 

In this case, the first half of the data is deleted in the following sample 

method and the sample size starts from 100 observations and ends with 1000 

observations. Then the number of deleted observations is reduced to one-third of 

the number of observations. This process will continue until the number of deleted 

observations reaches one-sixth of the total observations. MSE in this situation is 

reported in Table 3. 
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Table 3. MSE results by changing the number of observations deleted 

 in the following sample method 

 N=100 N=550 N=700 N=850 N=1000 

K=N/2 

MSE)AI( 58.78391 93.39186 36.65972 28.19384 28.65465 

MSE)NORM( 1.292855 0.155377 0.039933 0.019497 0.013195 

MSE)bootstrap( 296.2926 205.018 62.51748 37.41592 30.51024 

MSE)jackknife( 0.860603 0.06227 2.93E-05 6.97E-06 8.01E-06 

MSE)moutofn( 66.65849 84.01712 75.92326 79.64062 78.74072 

K=N/3 

MSE)AI( 78.83854 36.65011 36.7155 18.39525 30.50361 

MSE)NORM( 2.58793 0.045871 0.043026 0.018037 0.020355 

MSE)bootstrap( 79.28877 49.4034 39.2228 26.62329 37.29474 

MSE)jackknife( 0.002617 0.003691 2.47E-05 0.000416 0.048309 

MSE)moutofn( 52.3588 105.026 112.4147 109.4234 127.8436 

K=N/4 

MSE)AI( 42.88705 50.75837 23.72902 22.29392 18.28663 

MSE)NORM( 1.197849 0.077705 0.022909 0.019723 0.012609 

MSE)bootstrap( 41.58316 52.18786 45.98614 19.07068 9.882499 

MSE)jackknife( 0.283022 0.000328 0.000229 8.46E-06 4.60E-06 

MSE)moutofn( 69.59456 116.4668 135.6663 144.8462 138.8225 

K=N/5 

MSE)AI( 137.5781 43.5414 49.01397 20.25373 45.34659 

MSE)NORM( 4.271098 0.071808 0.04306 0.012599 0.021033 

MSE)bootstrap( 330.7382 51.96502 61.52358 9.974066 59.82961 

MSE)jackknife( 0.088614 0.005871 0.000126 0.000475 3.63E-05 

MSE)moutofn( 206.7466 186.3628 156.4408 192.5408 161.7997 

K=N/6 

MSE)AI( 45.55238 59.6292 36.55182 27.5658 38.94308 

MSE)NORM( 1.422849 0.059198 0.029613 0.021504 0.024246 

MSE)bootstrap( 82.55372 135.4796 45.87355 24.03733 54.0015 

MSE)jackknife( 0.052862 0.191306 6.13E-05 1.38E-05 0.000116 

MSE)moutofn( 151.55 273.1131 226.2395 323.8279 241.4212 

Source: Research findings 

 
The results show that as in the previous case (change in the number of 

matches), MSE in the Bootstrap, Standard, AI, and Jackknife methods are 
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decreasing asymptotically, while this index was not decreasing in the following 

sample method. Among these methods, MSE for the Standard and Jackknife 

methods are lower. This indicates their advantage over other methods. To make it 

easier to view the results, the data in Table 3 and Figure 3 are shown graphically. 

 

 
 

Figure 3. Graphs of the results of the mean squares of the error by changing the 

Deleted observation ratio of the following sample method 

 

The results show that as in the previous case (change in the number of 

matches), MSE in the Bootstrap, Standard, AI, and Jackknife methods are 

decreasing asymptotically, while this index was not decreasing in the following 

sample method. Among these methods, the average error squares for the Standard 

and Jackknife method are lower, which indicates their advantage over other 

methods. To make it easier to view the results, the data in Table 4 and Figure 4 

are shown graphically. 

 

 
 

 



208  Kamalian et al., Iranian Journal of Economic Studies, 9(1) 2020, 181-212 
 

 

  

 

 

Table 4. MSE results by changing the number of repetition of the subsamples 

 N=50 N=250 N=450 N=650 N=1100 

Bsubsample=50 

MSE)AI( 529.6412 330.8653 107.9964 134.9739 248.7356 

MSE)NORM( 6.100182 0.087817 0.043224 0.037957 0.022047 

MSE)bootstrap( 860.8127 47.64819 22.61767 17.01103 49.67163 

MSE)jackknife( 2.073773 0.002 0.000404 9.92E-05 0.000429 

MSE)moutofn( 0.014953 473.4452 716.8665 1484.815 2045.959 

Bsubsample=100 

MSE)AI( 482.7729 328.7763 792.3518 465.2119 178.9319 

MSE)NORM( 1.79902 0.225925 0.127905 0.04056 0.013606 

MSE)bootstrap( 266.0861 275.9289 1248.376 438.1554 20.21442 

MSE)jackknife( 3.561777 0.125222 261.6429 0.000112 0.000345 

MSE)moutofn( 0.011384 885.6246 1197.516 1304.061 958.0219 

Bsubsample=200 

MSE)AI( 560.8724 391.4492 533.84 414.3336 360.2601 

MSE)NORM( 4.209544 0.125757 0.043455 0.025359 0.024227 

MSE)bootstrap( 1517.231 178.7558 1175.746 380.7331 117.9272 

MSE)jackknife( 9.885017 0.014072 0.001217 0.008098 0.001051 

MSE)moutofn( 0.013012 1288.892 1344.729 881.8515 1116.453 

Bsubsample=500 

MSE)AI( 427.6695 833.2824 279.4204 320.3356 344.0046 

MSE)NORM( 2.9543 0.215308 0.050406 0.028842 0.026119 

MSE)bootstrap( 589.4341 11581.5 110.0391 181.6626 821.8234 

MSE)jackknife( 0.161917 984.4382 0.004756 0.004476 0.025523 

MSE)moutofn( 0.013819 4458.238 849.7428 1930.434 2573.406 

Bsubsample=1000 

MSE)AI( 351.3017 323.2287 358.6715 462.0875 341.9951 

MSE)NORM( 1.446269 0.105567 0.044341 0.04287 0.019512 

MSE)bootstrap( 439.5515 390.0648 79.74541 433.2199 317.2949 

MSE)jackknife( 0.894009 0.070336 0.000653 0.039303 0.00368 

MSE)moutofn( 0.015939 825.8653 1471.801 1875.089 1323.612 
Source: Research findings  
 

For better understanding, the simulation results are also shown graphically 

as follows: 
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Figure 4. Graphs of the results of the mean squares of the error by changing the 

number of repetitions of the following sample method 

 

As can be seen from the results of Table 4 and Figure 4, the average squares 

of error in the Bootstrap, Standard, AI, and Jackknife methods are decreasing 

asymptotically, while this index was not decreasing in the subsampling method. 

Among these methods, MSE for the normal method and the Jackknife method are 

lower, indicating their advantage over other methods. 

Simulating the data and calculating MSE asymptotically in the case of 

changing the number of Bootstrap repetitions 

MSE in this part of the simulation is checked by changing the Bootstrap 

repetitions and asymptotically. The sample size starts at 100 and ends at 1100. 

Table 5 presents the results: 
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Table 5. MSE results by changing the number of Bootstrap repetitions 

 N=50 N=250 N=450 N=650 N=1100 

Bbootstrap=500 

MSE)AI( 1112.115 228.8409 418.8944 179.502 477.0239 

MSE)NORM( 3.648499 0.224875 0.09247 0.027131 0.033443 

MSE)bootstrap( 1105.008 221.0139 751.6481 519.8813 2428.812 

MSE)jackknife( 298.802 0.049491 0.261751 0.365821 0.007517 

MSE)moutofn( 0.011265 1111.028 2823.532 1659.63 3896.132 

Bbootstrap=1000 

MSE)AI( 445.5329 395.9643 673.8688 1058.463 236.6235 

MSE)NORM( 2.030951 0.187133 0.044192 0.095758 0.02287 

MSE)bootstrap( 1166.436 653.0617 1507.854 705.7493 41.53934 

MSE)jackknife( 0.888042 219.4277 0.011571 143.2814 0.001451 

MSE)moutofn( 0.011035 1705.596 2852.903 1548.031 919.0762 

Bbootstrap=2000 

MSE)AI( 693.246 413.6001 687.2572 526.0844 341.8669 

MSE)NORM( 3.077611 0.242459 0.105537 0.036965 0.015833 

MSE)bootstrap( 1227.587 322.3889 3053.295 1519.746 113.6102 

MSE)jackknife( 0.276324 0.19781 796.3424 0.073821 0.000563 

MSE)moutofn( 0.043175 768.2862 2182.227 3101.47 1384.015 

Bbootstrap=6000 

MSE)AI( 819.3827 515.3442 411.0071 258.2441 674.5495 

MSE)NORM( 2.639941 0.207452 0.047066 0.027934 0.051193 

MSE)bootstrap( 420.7778 310.139 44.15289 130.9901 574.0718 

MSE)jackknife( 3.943456 0.020396 0.001366 0.003287 0.011961 

MSE)moutofn( 0.011726 1517.604 718.3087 1502.019 1319.515 

Bbootstrap=10000 

MSE)AI( 582.3094 319.2639 313.5653 216.6119 391.4366 

MSE)NORM( 2.305478 0.117972 0.052911 0.032569 0.021078 

MSE)bootstrap( 5910.211 916.1145 74.99605 104.3346 135.0861 

MSE)jackknife( 55.62754 205.7097 0.000672 0.002315 0.104926 

MSE)moutofn( 0.020915 1623.122 730.6563 1338.889 1103.474 
Source: Research findings  

 

For better understanding, the simulation results are also shown graphically 

as follows: 
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Figure 5. MSE results by changing the bootstrap repetitions 

 

As the results in the above table and diagram shows, MSE in the Bootstrap, 

Standard, AI, Jackknife, and Subsampling methods are decreasing asymptotically. 

Among these methods, MSE for the Standard Jackknife methods is lower, 

indicating their advantage over other methods. 

Simulating the data and calculating MSE asymptotically when the sample 

size is small. 

  In this section, small samples are examined and simulated, the efficiency of 

variance estimation methods is examined, and MSE is investigated 

asymptotically. The sample size starts at 50. Two observations are added each 

time until it will reach 110 observations. Tables 6 shows the results: 
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Table 6. MSE results in the small sample  

 N=50 N=60 N=70 N=80 N=90 N=100 N=110 
MSE)AI( 1112.416 1335.324 274.6258 564.1866 547.3737 840.1775 452.717 

MSE)NORM( 3.927309 3.052585 0.669477 1.700162 0.87638 0.912142 0.524775 

MSE)bootstrap( 621.1525 358.2389 227.0527 1607.533 2367.416 11653.73 694.3893 

MSE)jackknife( 9.393599 2.310499 0.821282 40.2916 2.472419 2468.557 0.205842 

MSE)moutofn( 470.9005 483.5897 400.8739 1750.472 3540.52 5491.874 1448.701 

Source: Research findings  

 

 
 

Figure 6. MSE results in the small sample 

 

The results indicate that in small samples, the efficiency of Jackknife 

variance estimators and the Standard method is better than other methods. 

 


