Iranian Journal of Economic Studies Vol. 3, No. 1, Spring 2014, 1-19

A New Nonlinear Specification of Structural Breaks for Money Demand in Iran

Esmaiel Abounoori*

Behnam Shahriyar

Department of Economics, Semnan University, Semnan-Iran. e.abounoories@profs.semnan.ac.ir Department of Economics & Management, Fazilat Higher Education Institute, Semnan-Iran. shahriarbehnam@gmail.com

Abstract

In a structural time series regression model, binary variables have been used to quantify qualitative or categorical quantitative events such as politic and economic structural breaks, regions, age groups and etc. The use of the binary dummy variables is not reasonable because the effect of an event decreases (increases) gradually over time not at once. The simple and basic idea in this paper is to involve a new transition function in a structural time series regression equation model in order to transform the binary dummy variables into a fuzzy set. The main purpose of this paper is to present a new method for endogenous modeling structural breaks in money demand function using fuzzy set. Hence, we model structural breaks in a money demand function via fuzzy set theory, transition functions and binary dummy variables and compare these. After introducing a new transition function, we model money volume shock in 1992 in money demand function. The results indicate that our transition function has better characteristics and accurate results than the binary dummy variable, exponential and logistic transition functions.

Keywords: Dummy Variable, Fuzzy Set, Structural Break, AS Membership Function, Money Demand, Iran. **JEL Classification**: C10, C52

Received: 25/2/2012

Accepted: 10/4/2013

^{*} The Corresponding Author

1. Introduction

According to the econometrics literature, the dummy variables are used to quantify the qualitative events and/or the structural breaks. The dummy variable is equal to 0 and 1 when an event is not present and during in which is present, respectively. Because of structural breaks, parameters of empirical economic equations are changed over time. Accordingly, Perron (1989) introduced unit root with structural breakpoint test and presented that the main reason of economic time series non stationarity is occurrence of qualitative shocks and events (Perron, 1989). It seems that we should define effects of qualitative shocks and events according to stationarity and non- stationarity of time series.

The application of the binary dummy variable is based on a relatively unrealistic assumption: according to the binary dummy variable either the effect of a qualitative variable exist (D=1) or the effect does not exist (D=0). In reality the effect may start at once, but in general depreciates (appreciates) gradually within a period of time. Thus, it is more reasonable to introduce a dummy variable as a fuzzy set. The decreasing (increasing) period may be short or long. A dummy variable as a fuzzy set can better reflect the gradual reduction of the effect.

Consequently, linear models with binary dummy variables have misspecification, while, nonlinear models (intrinsically linear or nonlinear) with fuzzy dummy variables can have better specifications than linear models.

Therefore, the main problem of this paper is that effect of qualitative events on dependent variable increases, decreases or constant over time. Consequently, we can say that if dependent variable is stationary then effect of qualitative shock or event decrease over time.

In this work we propose a different approach to arrive at the demand for money in Iran. We assume that M_1 reflects to a greater extent the preferences of agents to hold real balances in developing countries. Second, quarterly data (1990:2-2008.3) are used to capture the short run dynamics of the demand for money on the belief that this is the most appropriate frequency to study the demand for real balances. Third, real GDP is used as a scale variable, real interest rate is time value of money and the exchange rate is also index for money substitution problem. Finally, we specify a new nonlinear dynamics of the demand for money characterized as a smooth transition regression (STR) in which the

money volume shocks (Granger & Teräsvirta, 1993; Teräsvirta, 1994). In this paper, we can show that the demand for money in Iran can be represented by a, noninvertible, a new nonlinear specification of the STR type as well as logistic STR (LSTR). Moreover, our nonlinear representation is consistent with the theory. Findings of nonlinearities in money demand functions are gaining in evidence overtime.

This paper includes 5 sections; Second section includes a theoretical discussion of the fuzzy sets and structural breaks as a fuzzy variable, then we present a new approach to calculate membership function of this variable. Third section is devoted to the data analysis (this is the same as transition function in STR model). Empirical results are provided in section 4. The paper ends with summery and conclusion in section 5, with also appendices.

2. Theoretical Discussion

Before 1960s, classical mathematic theory was dominant in theoretic and applied mathematics. In this decade, theory of fuzzy was presented by Professor Lotfi Zadeh. He presented fuzzy sets, fuzzy algorithm, concept and application of linguistic variables in 1965, 1968 and 1978, respectively. Then, Black (1973) presented logical analysis and membership functions in his paper. Tanaka et. al (1982) introduced fuzzy regression and used linear programming for estimating fuzzy regression parameters.

Baliamoune (2000) applied a logistic member function for dummy variables, indirectly.

Giovanis (2009) applied fuzzy dummy variables with triangular membership function for studying effect of good or bad days on stock return. He takes in to triangle member ship functions for these variables. In this paper, by fuzzification of binary dummy fuzzy variables, Giovanis showed that fuzzy dummy variables how better results than (classical) dummy fuzzy variables, so that classification 0, 1 for days is week.

Bolotin (2004) used fuzzy dummy variable for fuzzifying Indicator Variables in Linear Regression Models in Medical Decision Making.

Our modeling is based on Giovanis (2009) and Bolotin (2004), because measurement of binary dummy variables ambiguous and fuzzy, but we use a new transition function as well as Granger and Teräsvirta (1994) and Teräsvirta (1994).

Abounouri and Shahriyar (2014), have used IIRF fuzzy dummy variables in order to modelling of Lucas Critique. They have estimated two models; one supply function model in Iran, and the other money demand function of Iran. Abounouri and Shahriyar (2013), have used Fuzzy approach to model the nonlinear structural breaks concerning money demand function in Iran. The main purpose of this paper is to compare LSTAR and ESTAR models with proposed model by Abounouri and Shahriyar (2013) (AS) concerning the money demand function of Iran.

Application of the Binary Dummy (BD) variable is based on a relatively unrealistic assumption: according to the Binary Dummy variable either the effect of a qualitative variable exist (D=1) or the effect does not exist (D=0). In reality the effect may start at once, but in general depreciate gradually within a period of time. Thus it is more reasonable to introduce a dummy variable as a Fuzzy set.

In the classical mathematics, a quantity is either a member of a set or isn't. In other words, if *Y* is a reference set, *A* is a subset of $Y(A \subset Y)$ and if *x* is a member of *Y*, we can write:

$$X_{A}(x) = \begin{cases} I, & x \in A \\ 0, & x \notin A \end{cases}$$
(1)

In which $X_A(x)$ is the characteristic function. If $x \in A$, then $X_A(x)=1$ and if $x \notin A$, then $X_A(x)=0$. In fuzzy mathematics, $X_A(x)$ is changed to $\mu_A(x)$ that is a membership function of x [5]. Therefore, we have:

 $\mu_{A}(x) = \begin{cases} 1, & x \text{ is perfect member of A} \\ (0,1), & x \text{ is imperfect member of A} \\ 0, & x \notin A \end{cases}$ (2)

 $\mu_A(x)$ is a membership function and the membership degree of A is important. In a classical linear regression model using Binary Dummy variable (BD), we can write:

 $Y_{t} = \alpha + \beta X_{t} + \gamma B D_{t} + u_{t}$

According to the concept of Binary Dummy variable, we write:

$$BD_t = X_A(t) = \begin{cases} 1, & t \in A \\ 0, & t \notin A \end{cases}$$
(3)

Where t is the time (trend) variable that means,

$$E(Y_t) = \begin{cases} \alpha_0 + \beta X_t, & t < t_s \\ (\alpha + \gamma) + \beta X_t, & t_s \le t < t_e \end{cases}, \quad DB_t \in \{0, 1\}$$

2.1 Determination of fuzzy membership function

In fuzzy mathematics, fuzzification of a set is determined by constructing membership function or degrees (Sivanandam, Sumathi, & Deepa, 2007). Determination of membership function or degrees depends on their application. Fussiness in a set is characterized by determining its membership function. This classifies the elements in the set, whether they are discrete or continuous. Definition of a fuzzy set is completed by determining membership function according to its application. The shape of the membership function is an important criterion. Because if membership function is not characterized correctly (based on stationarity or non-statioarity), then all studies and analysis will deviate, so that regression model will have misspecification.

As Giovanis (2009) and Bolotin (2004), on the contrary with other researches where the dependent variable is fuzzy and so we have fuzzy interval estimations, our analysis is based to the fuzzification of the dummy variables representing the shock effects to show the weakness of the classification of one and zero dummy variables which leads to is classification errors. Here, dependent variable can be crisp. In fact, fuzzification consists in to change crisp variable (classical) to a fuzzy set. For this, we have to define the fuzzy rules.

For deriving fuzzy degrees, we can use intuition, inference, neural network and etc methods (Selmins, 1987). But, here, we use our transition function (AS), logistic and exponential transition functions (which were introduced by Granger and Träsvirta (1994) and Träsvirta (1994)) for modeling effect of a structural break in money demand function (Abounouri & Shahriyar 2013 & 2014).

According to Abounoori and Shahriyar (2014), if assuming that the effect of a qualitative event (shock) reduces gradually overtime and the shock has started at time t_s will end by time t_e , then we should use the

Fuzzy Dummy(*FD*) variable in which the binary set, $\{0,1\}$, will be changed to the fuzzy membership function [0,1]:

$$FD_{t} = \mu_{A}(t) = \begin{cases} 0, & 0 \le t < t_{S} \\ \int f(t)dt, & t_{S} < t \le t_{e} \\ 0, & t_{e} < t \end{cases}$$
(4)

If we suppose that the effect of the shock decreases gradually over time, we can write:

$$\frac{d(DF)}{dt} \le 0 \tag{5}$$

So that, we can introduce a differential equation in the rectangular ABCD as follows:

$$\frac{d(DF)}{dt} = f(t) \tag{6}$$

Assuming $t_s = 0$, the differential equation would be:

$$\frac{d(FD)}{dt} = -\frac{\lambda}{t_e} \left(\frac{t}{t_e}\right)^{\lambda - 1}, \qquad \lambda \ge 0 \tag{7}$$

In which λ is the intensity parameter of the shock that has 3 forms:

$$\frac{d^{2}(FD)}{dt^{2}} = \frac{\lambda(1-\lambda)}{t_{e}^{2}} \left(\frac{t}{t_{e}}\right)^{\lambda-2} \Longrightarrow \begin{cases} 0 \leq \lambda < 1 \rightarrow \frac{d^{2}(DF)}{dt^{2}} \geq 0\\ \lambda = 1 \qquad \rightarrow \frac{d^{2}(DF)}{dt^{2}} = 0\\ \lambda > 1 \qquad \rightarrow \frac{d^{2}(DF)}{dt^{2}} < 0 \end{cases}$$
(8)

General solution of equation (9) is as follows:

$$\int d(FD) = \int -\frac{\lambda}{t_e} \left(\frac{t}{t_e}\right)^{\lambda-1} dt$$

$$FD = c - \left(\frac{t}{t_e}\right)^{\lambda}, \qquad \lambda \ge 0$$
(9)

Now the parameter λ is the shock intensity. Specific solution to equation (9) at point (0, 1) will be:

$$FD = 1 - \left(\frac{t}{t_e}\right)^{\lambda}, \qquad \lambda \ge 0 \tag{10}$$

The parameter λ has to be determined within regression model. In fact, we select a λ , which can minimize error sum of squares. Consequently, we can include the following *FD* function into a classical linear regression.

$$FD_{t} = \mu_{A}(t) = \begin{cases} 0, & 0 \le t < t_{s} \\ 1 - (\frac{t - t_{s}}{t_{e} - t_{s}})^{\lambda}, & t_{s} < t \le t_{e} \\ 0, & t_{s} < t \end{cases}$$
(11)

 $Y_t = \alpha + \beta X_t + \gamma F D_t + u_t \qquad (12)$

Here after we call this function "AS" fuzzy membership or transition function.

Equation (12) is a nonlinear regression equation with parameters α , β , γ and λ to be estimated; $\lambda \in [0, +\infty)$, $\lambda = 0$ means that there has been no shock at all; If $\lambda < 1$, the effect of shock will reduce decreasingly. If $\lambda > 1$, effect of shock will reduce increasingly and if $\lambda = 1$, equation (16) changes to a linear form and if λ tend to infinity (∞) then the FD will be transformed to the BD.

In nonlinear equation (12), the parameters α and β as well as λ and γ can be estimated by Nonlinear Least Squares (NLS). In other words, we can estimate the parameters including λ , which minimizes Residual Sum of Squares (RSS). Consequently, we will find highest significant relation between $\binom{t_s}{t_e}$ and the dependent variable. The start of the shock is either observable due to date happened and/or can be found by the break point of the Chow test. An important point in FD_t is to select end time of the shock effect (t_e) . A suggested method is to use a response function of Y_t .

If dependent variable time series is to be non-stationary, we can use following function:

$$FD_{t} = \mu_{A}(t) = \begin{cases} 0, & 0 \le t < t_{0} \\ (\frac{t - t_{s}}{t_{l} - t_{e}})^{\lambda}, & t_{s} < t \le t_{e} \\ 0, & t_{e} < t \end{cases}$$
(13)

A nonlinear parametric alternative model is Smooth Transition Regression (STR) model which introduced Granger and Träsvirta (1994) and Träsvirta (1994). In this model, the transition function can be parameterized either as a logistic function, in whose case we have a logistic STR (LSTR) model:

$$FD_{t} = G(\gamma, C, S_{t}) = \left(1 + \exp\left\{-\theta \prod_{k=1}^{K} \left(S_{t} - C_{k}\right)\right\}\right)^{-1}, \theta > 0$$
(14)

or as an exponential function, in whose case we have an exponential STR (ESTR) model:

$$FD_{t} = G(\gamma, C, S_{t}) = 1 - \exp\left\{-\theta \prod_{k=1}^{K} \left(S_{t} - C_{k}\right)\right\}, \theta > 0$$
(15)

Generally K = 1 or K = 2 are selected.

3. Money Demand Model Specification

In this paper, we have used money demand data to compare the application of BD, ASTR (AS Transition Function), ESTR and LSTR model.

We use quarterly time series of national real money demand (M), national real GDP (G), nominal interest rate (i), GDP deflator Inflation (Inf) and exchange rate of US \$ in Iran, from 1990:2 to 2008:3 (all variables are in constant price of 1997). The data is obtained from Central Bank of Iran. Based on these data, we estimate money demand function for Iran, and study effect of oil production shock (in 1992) on this function. In this year, because of increase in oil production and government revenue of oil sales, money volume increased function (Abounouri & Shahriyar 2013 & 2014).

In this paper, money demand function is specified as follows:

$$M = \beta_0 \cdot G^{\beta_1} \cdot ER^{\beta_2} \cdot e^{\beta_3(t-inf)+\varepsilon}$$
(16)

Where in logarithmic form is:

$$LnM = \beta_0 + \beta_1 LnG + \beta_2 LnER + \beta_3 (i - \inf) + \varepsilon$$
(17)

Here we use M_1 definition for money volume.

According to the Chow test in appendix (1), the start point of monetary policy shock is observed on 1992:3. Due to the structural break, we have used Philips-Peron unit root test. According to the results in appendix (2) summarized in table (1), all variables except EX are stationary.

	I ubic III		1000			
sorios	P-P Stat.	Critical Values				
series	ies P-P Stat. —		5%	10%		
М	3.86-	-4.08	-3.47	-3.16		
Y	-6.29	-4.08	-3.47	-3.16		
Ι	-3.97	-4.08	-3.47	-3.16		
INF	-5.84	-4.08	-3.47	-3.16		
EX	-1.42	-4.08	-3.47	-3.16		
Courses Ammond	··· (2)					

Table 1: P-P Unit Root Test

Source: Appendix (2)

4. Empirical Results

The nonlinear approach over the BD variable has been justified concerning the following practical evidences. Ln(M) is regressed on Ln(G(-1)), I-INF and Ln(EX(-2)) including binary dummy variable and fuzzy (nonlinear) dummy variables. The estimation and prediction results of models are shown in Table (2). *FD* is the membership function, and estimated as follow:

$$\begin{cases} FD _ AS = 1 - (\frac{t}{75})^{0.15} \\ FD _ ESTR = Exp(0.001t) \\ FD _ ESTR = [1 + Exp(0.003t)]^{-1} \end{cases}$$
(18)

FD=0, before 1992:3. According to the estimated results $\lambda = 0.15$ shows nonlinearity of money demand.

The corresponding transition functions graphs are shown in Figure (1); if a structural break (shock) occurs then effect of this shock on National money demand is significant and is not equal to θ for next following periods. As it can be seen in Figure (1), Because LOG(M) is stationary, AS fuzzy membership function (transition function) for shifting between two regimes (before and after structural break) is more

rational than the others, consequently shock effect on money demand depreciate more rapid.

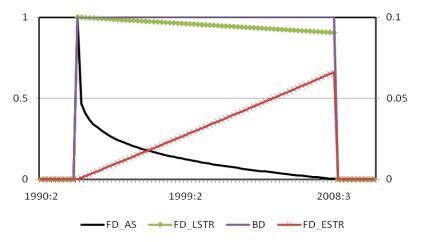


Figure 1: Graphs of the Membership Functions

Model∖ Variable	Constant	Ln(G(-1))	I-INF	Ln(EX(-2))	Binary Dummy Variable	$ heta$ / λ	R ²	$Ad.R^2$	F	D.W	RMSE
Binary	1.97	-0.37	-0.29	0.07	-0.28	_	0.62	0.60	27.30	1.84	53.76
Dinary	(0.48)	(0.05)	(0.44)	(0.03)	(0.04)		0.02	0.00	27.50	1.04	55.70
ESTR	5.42	0.17	0.19	-0.13		-0.001	0.58	0.56	23.30	0.91	56.41
ESIK	(1.15)	(0.09)	(0.55)	(0.04)	-	(0.0001)	0.58	0.50	25.50	0.91	50.41
LSTR	10.80	0.17	0.18	-0.13		0.002	0.58	0.56	23.20	0.00	56.51
LSIK	(2.32)	(0.09)	(0.55)	(0.05)	-	(0.0004)	0.58	0.50	25.20	0.90	30.31
ASTR	0.46	0.47	-0.63	0.15		0.15	0.60	0.69	28 20	2.06	50.20
ASIK	(0.08)	(0.04)	(0.44)	(0.06)	-	(0.05)	0.69	0.68	38.30	2.06	50.39
Source	se Anne	ndices	(3) and	(A)							

Table 2: Estimation and Prediction Results

Sources: Appendices (3) and (4)

According to Table 2, all statistics R^2 , adjusted R^2 , F and D.W., clearly indicate that model based on the AS fuzzy dummy variable (AS transition function or ASTR model) is preferred to the other models

which are based on the Binary dummy variable, ESTR and LSTR. We can conclude that ASTR Model has less measuring error (misspecification error) than the others. Moreover, based on prediction of M, ASTR model has clearly less MSE than the other models; prediction results are shown in appendix (4).

All coefficients of ASTR model except real interest rate are significant in %5 probability level. Real interest rate is significant in %16 probability level. This variable isn't significant in the other models. Whereas according to D.W. statistics in table (2), in spite of ASTR and Binary models, ESTR and LSTR models have autocorrelation problem. According to theories of demand for money such as transactions demand for money and speculative demand for money, elasticity of money to GDP and real interest rate should be positive and negative, respectively. Whereas if elasticity of money to exchange rate is to be significant, there will be money substitution phenomena. These theories are confirmed only in ASTR model. For example, despite of transactions theory of demand for money in binary model, effect of GDP on demand for money is negative.

Not that intensity parameter λ is less than 1 in ASTR model, this mean that effect of structural break (as a result of money supply shock) has been depreciated overtime. This result is more applicable to stationarity and Philips-Perron unit root test.

5. Summery and Conclusion

A significant part of the empirical researches has been devoted to the search for robust econometric specifications of empirical models of the demand for money with the desired property of theoretical coherence.

For modeling structural breaks in money demand function, we proposed a new Smooth Transition Regression (STR) which is named ASTR under fuzzy set theory. The idea in this paper has been to use the smooth parametric transition function as well as the logistic transition function has been presented by Granger and Teräsvirta (1994), $F(t) = 1-[(t - t_s)/(t_e - t_s)]^{\lambda}$, to model endogenously a shock (structural break) in demand for money time series. Characteristics of this transition function are flexible because at time t_s there is an interruption in the series, that is, an impulse shock, that fully dissipates by time t_e . The function F(t) is everywhere zero except in the interval $(t_s, t_e]$, with the nature of the shock controlled by $0 \le \lambda < \infty$. Observe that $F(t) \to 0$ as

 $\lambda \rightarrow 0$, and $F(t) \rightarrow 1$ as $\lambda \rightarrow \infty$. Thus, the shock is most persistent when λ is large. In fact, when F(t) = 1, using the parametric function is equivalent to using a single binary dummy variable in the interval (t_s, t_e]. Therefore, we have introduced a fuzzy dummy variable (AS transition function) alternative to that of the hard binary dummy variable, exponential and logistic transition functions.

As mentioned above, for purposes of this paper, we estimate money demand function of Iran and modeled structural break in 1992:3 by ASTR, Binary Dummy Variable, ESTR and LSTR models. The main results of this paper can be as follows:

It is important that researches take into dummy variables as fuzzy sets, because measurement of these is ambiguous.

ASTR model has more mathematical flexible characteristics and better results in estimation and prediction. Consequently, ASTR model has less misspecification error than the other alternatives.

ASTR model structural breaks endogenously and involve stationarity and non-stationarity of dependent variable time series. In other word, we can say that if dependent variable is stationary then effect of shock decrease over time then parameters of regression return to before of the shock overtime (parameters are time varying). This property was observed in money demand function estimated for Iran in this paper.

Acknowledgment

We would like to thank the editorial board as well as unanimous referees of the Journal whose comments have been helpful improving this paper.

References

- Abounouri, E. & Shahriyar, B. (2013). Modelling of Lucas Critique using Fuzzy Set Approach. Journal of Economic Research, Tehran University, 49(2), 229-265.
- Abounouri, E. & Shahriyar, B. (2014). Nonlinear Modelling of Structural Breaks concerning Money Demand Function in Iran using Fuzzy Approach. the Economic Research, Tarbiat Modares University, 13(4), 55-78.
- Baliamoune, M. (2000). Economics of Summitry: an Empirical Assessment of the Economic Effect of Summits. 27, 295-314.

Black, M. (1973). an Exercise in Logical Analysis. 4 (4), 427-455.

- Bolotin, A. (2004). Replacing Indicator Variables by Fuzzy Membership Functions in Statistical Regression Models: Examples of Epidemiological Studies. *Biological and Medical Data Analysis*, 3337, 251 - 258.
- Giovanis, E. (2009). Bootstrapping Fuzzy-GARCH Regressions on the Day of the Week Effect in Stock Returns: Applications in MATLAB. *Working Paper*.
- Granger, C. J., & Teräsvirta, T. (1994). The Combination of Forecasts Using Changing Weights. *International Journal of Forecasting*, 10, 47-57.
- Granger, C., & Teräsvirta, T. (1993). *Modeling Nonlinear Economic Relationships*. London: Oxford University Press.
- Perron, P. (1989). The great crash, the oil price shock, and the unit root hypothesis. 57, 1361-1401.
- Selmins, A. (1987). Least Squares Model Fitting To Fuzzy Vector Data. *Fuzzy Sets and Systems*, 8, 903-908.
- Sivanandam, S., Sumathi, S., & Deepa, S. (2007). *Introduction to Fuzzy Logic using MATLAB*. New York: Springer.
- Tanaka, H., Uejima, S., & Asai, K. (1982). Linear Regression Analysis With Fuzzy Model. *IEEE Transactions on SMC*, 12, 903-907.
- Teräsvirta, T. (1994). Specification, Estimation and Evaluation of Smooth Transition Autoregressive Models. *Journal of the American Statistical Association*, 89, 208-218.
- Teräsvirta, T. (1994). Testing Linearity and Modelling Nonlinear Time Series. *Kybernetika*, *30* (3), 319-330.
- Zadeh, L. (1968). Fuzzy Algorithms. *Information and Control*, 12, 94–102.
- Zadeh, L. (1996). Fuzzy Logic = Computing with Words. *IEEE Transactions on Fuzzy Systems*, 4 (2), 103-111.
- Zadeh, L. (1988). Fuzzy Logic. *IEEE Computer Magazine*, 21 (4), 177-186.
- Zadeh, L. (1965). Fuzzy Sets. Information and Control, 8 (3), 338–353.
- Zadeh, L. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. *Fuzzy* Sets and Systems, 1, 3-28.

Appendix: Computer base estimation results:

Appendix 1: Chow Breakpoint Test

Chow Breakpoint Test: 1992:3

F-statistic	Probability	0.000000
Log likelihood ratio	Probability	0.000000
-	-	

Appendix 2: Philips-Perron test results

	Phillips-Perro	on Unit Root Test on M	
PP Test Statistic	-3.868050	1% Critical Value* 5% Critical Value 10% Critical Value	-4.0871 -3.4713 -3.1624

*MacKinnon critical values for rejection of hypothesis of a unit root.

	Phillips-Perro	on Unit Root Test on G	
PP Test Statistic	-6.294798	1% Critical Value* 5% Critical Value 10% Critical Value	-4.0871 -3.4713 -3.1624

*MacKinnon critical values for rejection of hypothesis of a unit root.

	Phillips-Perror	n Unit Root Test on INF	
PP Test Statistic	-5.841099	1% Critical Value* 5% Critical Value 10% Critical Value	-4.0890 -3.4721 -3.1629

*MacKinnon critical values for rejection of hypothesis of a unit root.

	Phillips-Perro	n Unit Root Test on EX	
PP Test Statistic	-1.419179	1% Critical Value* 5% Critical Value 10% Critical Value	-4.0836 -3.4696 -3.1615

*MacKinnon critical values for rejection of hypothesis of a unit root.

Appendix 3: Computer based estimation results

ASTR Model

Dependent Variable: LOG(M) Method: Least Squares Date: 12/28/11 Time: 09:48 Sample(adjusted): 1990:2 2008:3 Included observations: 72 after adjusting endpoints Convergence achieved after 7 iterations LOG(M)=C(1)*(1-(TT^C(2)))+C(3)*LOG(G(-1))+C(4)*(I-INF)+C(5) *LOG(EX(-2)) Coefficient Std. Error t-Statistic Prob. C(1) 0.461945 0.082124 5.624981 0.0000 C(2) 0.150231 0.055271 2.718072 0.0084 C(3) 0.465844 0.037081 12.56289 0.0000 C(4) -0.627870 0.444978 -1.411014 0.1629 C(5) 0.128994 0.045047 2.863538 0.0056 =

0(0)	0.120004	0.040047 2.00000	0.0000
R-squared	0.695827	Mean dependent var	6.388304
Adjusted R-squared	0.677668	S.D. dependent var	0.150511
S.E. of regression	0.085452	Akaike info criterion	-2.014811
Sum squared resid	0.489236	Schwarz criterion	-1.856710
Log likelihood	77.53321	F-statistic	38.31739
Durbin-Watson stat	2.059161	Prob(F-statistic)	0.000000

Binary	Model
Binary	Model
·	

Dependent Variable: L Method: Least Square Date: 12/28/11 Time: Sample(adjusted): 199 Included observations:	es : 10:15 90:2 2008:3	ting endpoints	3	
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(G(-1)) I-INF LOG(EX(-2)) BD	1.971565 0.366248 -0.295121 0.070046 -0.283360	0.476646 0.053130 0.439259 0.025178 0.039930	4.136333 6.893433 -0.671862 2.782032 -7.096459	0.0001 0.0000 0.5040 0.0070 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.620282 0.603582 0.081945 0.499025 80.55048 1.844869	Mean depen S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	lent var criterion terion	6.388304 0.150511 -2.098625 -1.940523 27.31691 0.000000

LSTR Model

Dependent Variable: LOG(M) Method: Least Squares Date: 12/28/11 Time: 09:50 Sample(adjusted): 1990:3 1387:2 Included observations: 72 after adjusting endpoints Convergence achieved after 6 iterations LOG(M)=C(1)*(1+EXP(-C(2)*(T)))^-1+C(3)*LOG(G(-1))+C(4)*(I-INF)+C(5) *LOG(EX(-2))

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2) C(3) C(4) C(5)	10.80273 0.002634 0.172436 0.183764 -0.134813	2.320983 0.000410 0.093441 0.553307 0.046395	4.654376 6.423056 1.845413 0.332119 -2.905791	0.0000 0.0000 0.0694 0.7408 0.0050
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.581219 0.556217 0.100266 0.673572 66.02216 0.912918	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	6.388304 0.150511 -1.695060 -1.536958 23.24707 0.000000

ESTR Model

Dependent Variable: LOG(M) Method: Least Squares Date: 12/30/11 Time: 00:24 Sample(adjusted): 1990:2 2008:3 Included observations: 72 after adjusting endpoints Convergence achieved after 7 iterations LOG(M)=C(1)*(EXP(-C(2)*(T)))+C(3)*LOG(G(-1))+C(4)*(I-INF)+C(5)
LOG(M)=C(1)*(EXP(-C(2)*(T)))+C(3)*LOG(G(-1))+C(4)*(I-INF)+C(5) *LOG(EX(-2))

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	5.416684	1.150432	4.708390	0.0000
C(2)	-0.001252	0.000181	-6.914605	0.0000
C(3)	0.168918	0.093476	1.807065	0.0752
C(4)	0.193198	0.552597	0.349617	0.7277
C(5)	-0.131522	0.044454	-2.958581	0.0043
R-squared	0.582778	Mean dependent var S.D. dependent var		6.388304
Adjusted R-squared	0.557870			0.150511
S.E. of regression	0.100079	Akaike info criterion		-1.698790
Sum squared resid	0.671065	Schwarz criterion		-1.540688
Log likelihood	66.15642	F-statistic		23.39652
Durbin-Watson stat	0.915264	Prob(F-stati	stic)	0.000000

Forecast: MF_AS Actual: M Sample: 1990:2 2008:3 Include observations: 72		Forecast: MF_BD Actual: M Sample: 1990:2 2008:3 Include observations: 72	
Poot Moon Squared Error	50.39205	Root Mean Squared Error	53,37050
Root Mean Squared Error Mean Absolute Error	39.46332	Mean Absolute Error	40 87927
Mean Abs. Percent Error	6.532780	Mean Abs. Percent Error	6 608209
Theil Inequality Coefficient	0.041501 0.000544 0.025700	Theil Inequality Coefficient	0.000209 0.039892 0.001591 0.100110
Bias Proportion		Bias Proportion	
Variance Proportion		Variance Proportion	
Covariance Proportion	0.973756	Covariance Proportion	0.982990
Forecast: MF_ESTR Actual: M Sample: 1990:2 2008:3 Include observations: 72		Forecast: MF_LSTR Actual: M Sample: 1990:2 2008:3 Include observations: 72	
Root Mean Squared Error	56.41301	Root Mean Squared Error	56.5105
Mean Absolute Error	44.75081	Mean Absolute Error	44.8093
Mean Abs. Percent Error	7.632677	Mean Abs. Percent Error	7.64243
Theil Inequality Coefficient	0.046571	Theil Inequality Coefficient	0.04665
Bias Proportion	0.002260	Bias Proportion	0.00229
Variance Proportion	0.113759	Variance Proportion	0.11650
Covariance Proportion	0.883980	Covariance Proportion	0.88120

Appendix 4: Predictions results