
Iranian Journal of Economic Studies 

Vol. 3, No. 1, Spring 2014, 1-19 

 
 

A New Nonlinear Specification of Structural Breaks for 

Money Demand in Iran 

 
Esmaiel Abounoori 

Department of Economics, 
 Semnan University, 

 Semnan-Iran.  
e.abounoories@profs.semnan.ac.ir 

Behnam Shahriyar 

Department of Economics & Management, 
Fazilat Higher Education Institute, 

Semnan-Iran. 
shahriarbehnam@gmail.com 

 

Abstract 
In a structural time series regression model, binary variables have 

been used to quantify qualitative or categorical quantitative events 

such as politic and economic structural breaks, regions, age groups 

and etc. The use of the binary dummy variables is not reasonable 

because the effect of an event decreases (increases) gradually over 

time not at once. The simple and basic idea in this paper is to 

involve a new transition function in a structural time series 

regression equation model in order to transform the binary dummy 

variables into a fuzzy set. The main purpose of this paper is to 

present a new method for endogenous modeling structural breaks 

in money demand function using fuzzy set. Hence, we model 

structural breaks in a money demand function via fuzzy set theory, 

transition functions and binary dummy variables and compare 

these. After introducing a new transition function, we model 

money volume shock in 1992 in money demand function. The 

results indicate that our transition function has better 

characteristics and accurate results than the binary dummy 

variable, exponential and logistic transition functions.  
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1.  Introduction 

According to the econometrics literature, the dummy variables are used 

to quantify the qualitative events and/or the structural breaks. The 

dummy variable is equal to 0 and 1 when an event is not present and 

during in which is present, respectively. Because of structural breaks, 

parameters of empirical economic equations are changed over time. 

Accordingly, Perron (1989) introduced unit root with structural 

breakpoint test and presented that the main reason of economic time 

series non stationarity is occurrence of qualitative shocks and events 

(Perron, 1989). It seems that we should define effects of qualitative 

shocks and events according to stationarity and non- stationarity of time 

series.  

The application of the binary dummy variable is based on a relatively 

unrealistic assumption: according to the binary dummy variable either the 

effect of a qualitative variable exist (D=1) or the effect does not exist 

(D=0).  In reality the effect may start at once, but in general depreciates 

(appreciates) gradually within a period of time. Thus, it is more 

reasonable to introduce a dummy variable as a fuzzy set. The decreasing 

(increasing) period may be short or long. A dummy variable as a fuzzy 

set can better reflect the gradual reduction of the effect. 

Consequently, linear models with binary dummy variables have 

misspecification, while, nonlinear models (intrinsically linear or 

nonlinear) with fuzzy dummy variables can have better specifications 

than linear models.  

Therefore, the main problem of this paper is that effect of qualitative 

events on dependent variable increases, decreases or constant over time. 

Consequently, we can say that if dependent variable is stationary then 

effect of qualitative shock or event decrease over time.  

In this work we propose a different approach to arrive at the demand 

for money in Iran. We assume that M1 reflects to a greater extent the 

preferences of agents to hold real balances in developing countries. 

Second, quarterly data (1990:2-2008.3) are used to capture the short run 

dynamics of the demand for money on the belief that this is the most 

appropriate frequency to study the demand for real balances. Third, real 

GDP is used as a scale variable, real interest rate is time value of money 

and the exchange rate is also index for money substitution problem. 

Finally, we specify a new nonlinear dynamics of the demand for money 

characterized as a smooth transition regression (STR) in which the 
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money volume shocks (Granger & Teräsvirta, 1993; Teräsvirta, 1994). In 

this paper, we can show that the demand for money in Iran can be 

represented by a, noninvertible, a new nonlinear specification of the STR 

type as well as logistic STR (LSTR). Moreover, our nonlinear 

representation is consistent with the theory. Findings of nonlinearities in 

money demand functions are gaining in evidence overtime.  

This paper includes 5 sections; Second section includes a theoretical 

discussion of the fuzzy sets and structural breaks as a fuzzy variable, then 

we present a new approach to calculate membership function of this 

variable. Third section is devoted to the data analysis (this is the same as 

transition function in STR model). Empirical results are provided in 

section 4.  The paper ends with summery and conclusion in section 5, 

with also appendices. 

 

2.  Theoretical Discussion 

Before 1960s, classical mathematic theory was dominant in theoretic and 

applied mathematics. In this decade, theory of fuzzy was presented by 

Professor Lotfi Zadeh. He presented fuzzy sets, fuzzy algorithm, concept 

and application of linguistic variables in 1965, 1968 and 1978, 

respectively. Then, Black (1973) presented logical analysis and 

membership functions in his paper. Tanaka et. al (1982) introduced fuzzy 

regression and used linear programming for estimating fuzzy regression 

parameters. 

Baliamoune (2000) applied a logistic member function for dummy 

variables, indirectly.  

Giovanis (2009) applied fuzzy dummy variables with triangular 

membership function for studying effect of good or bad days on stock 

return. He takes in to triangle member ship functions for these variables. 

In this paper, by fuzzification of binary dummy fuzzy variables, Giovanis 

showed that fuzzy dummy variables how better results than (classical) 

dummy fuzzy variables, so that classification 0, 1 for days is week.  

Bolotin (2004) used fuzzy dummy variable for fuzzifying Indicator 

Variables in Linear Regression Models in Medical Decision Making. 

Our modeling is based on Giovanis (2009) and Bolotin (2004), 

because measurement of binary dummy variables ambiguous and fuzzy, 

but we use a new transition function as well as Granger and Teräsvirta 

(1994) and Teräsvirta (1994). 
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Abounouri and Shahriyar (2014), have used IIRF fuzzy dummy 

variables in order to modelling of Lucas Critique. They have estimated 

two models; one supply function model in Iran, and the other money 

demand function of Iran.  Abounouri and Shahriyar (2013), have used 

Fuzzy approach to model the nonlinear structural breaks concerning 

money demand function in Iran.  The main purpose of this paper is to 

compare LSTAR and ESTAR models with proposed model by 

Abounouri and Shahriyar (2013) (AS) concerning the money demand 

function of Iran. 

Application of the Binary Dummy (BD) variable is based on a 

relatively unrealistic assumption: according to the Binary Dummy 

variable either the effect of a qualitative variable exist (D=1) or the effect 

does not exist (D=0). In reality the effect may start at once, but in general 

depreciate gradually within a period of time.  Thus it is more reasonable 

to introduce a dummy variable as a Fuzzy set. 

In the classical mathematics, a quantity is either a member of a set or 

isn’t.  In other words, if Y is a reference set, A is a subset of Y ( YA  ) 

and if x is a member of Y, we can write: 

 (1)A 

 1,     x A
X (x)

 0,     x A 


 


 

In which  (x)X A
 is the characteristic function. If Ax , then

1 (x)X A
and if Ax , then 0 (x)X A

. In fuzzy mathematics, 

 (x)X A
 is changed to )(xA  that is a membership function of x [5]. 

Therefore, we have: 

1,  is perfect member of A

( ) (0,1),     is imperfect member of A (2)

0,    

A

x

x x

x A






 
 

 

)(xA is a membership function and the membership degree of A is 

important. In a classical linear regression model using Binary Dummy 

variable (BD), we can write: 

t t t tY X BD u       

According to the concept of Binary Dummy variable, we write:  
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(3)t A

1,     t A
BD X (t)

0,     t A


  


 

Where t is the time (trend) variable that means, 

0 ,
( ) , {0,1}

( ) ,

t s

t t

t s e

X t t
E Y DB

X t t t

 

  

 
 

   
 

 

2.1 Determination of fuzzy membership function 

In fuzzy mathematics, fuzzification of a set is determined by constructing 

membership function or degrees (Sivanandam, Sumathi, & Deepa, 2007). 

Determination of membership function or degrees depends on their 

application. Fussiness in a set is characterized by determining its 

membership function. This classifies the elements in the set, whether they 

are discrete or continuous. Definition of a fuzzy set is completed by 

determining membership function according to its application. The shape 

of the membership function is an important criterion. Because if 

membership function is not characterized correctly (based on stationarity 

or non-statioarity), then all studies and analysis will deviate, so that 

regression model will have misspecification. 

As Giovanis (2009) and Bolotin (2004), on the contrary with other 

researches where the dependent variable is fuzzy and so we have fuzzy 

interval estimations, our analysis is based to the fuzzification of the 

dummy variables representing the shock effects to show the weakness of 

the classification of one and zero dummy variables which leads to is 

classification errors. Here, dependent variable can be crisp. In fact, 

fuzzification consists in to change crisp variable (classical) to a fuzzy set. 

For this, we have to define the fuzzy rules. 

For deriving fuzzy degrees, we can use intuition, inference, neural 

network and etc methods (Selmins, 1987). But, here, we use our 

transition function (AS), logistic and exponential transition functions 

(which were introduced by Granger and Träsvirta (1994) and Träsvirta 

(1994)) for modeling effect of a structural break in money demand 

function (Abounouri & Shahriyar 2013 & 2014). 
According to Abounoori and Shahriyar (2014), if assuming that the 

effect of a qualitative event (shock) reduces gradually overtime and the 

shock has started at time st  will end by time et , then we should use the 
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Fuzzy Dummy ( )FD variable in which the binary set, 1,0 , will be 

changed to the fuzzy membership function ]1,0[ : 

)4(

,0

,)(

0,0

)(















 
tt

tttdttf

tt

tFD

e

es

S

At   

If we suppose that the effect of the shock decreases gradually over 

time, we can write: 

)5(0
)(


dt

DFd
 

So that, we can introduce a differential equation in the rectangular 

ABCD as follows: 

)6()(
)(

tf
dt

DFd
  

 Assuming 0st  , the differential equation would be: 

)7(0,)(
)( 1   

 

ee t

t

tdt

FDd
 

In which   is the intensity parameter of the shock that has 3 forms: 

)8(

1

1

10

)(
)1()(

0
2

)(
2

0
2

)(
2

0
2

)(
2

2

22

2


































dt

DFd

dt

DFd

dt

DFd

ee t

t

tdt

FDd







   

General solution of equation (9) is as follows: 

)9(0,)(

)()( 1



 










e

ee

t

t
cFD

dt
t

t

t
FDd

 

Now the parameter  is the shock intensity.  Specific solution to 

equation (9) at point (0, 1) will be: 
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)10(0,)(1  

et

t
FD  

The parameter  has to be determined within regression model.  In 

fact, we select a , which can minimize error sum of squares.  

Consequently, we can include the following FD function into a classical 

linear regression. 

)11(

,0

,)(1

0,0

)(

























tt

ttt
tt

tt

tt

tFD

s

es

se

s

s

At

  

)12(tttt uFDXY    

Here after we call this function “AS” fuzzy membership or transition 

function. 

Equation (12) is a nonlinear regression equation with parameters  ,

,   and to be estimated; ),0[  , 0   means that there has been 

no shock at all; If 1 , the effect of shock will reduce decreasingly.  If

1 , effect of shock will reduce increasingly and if 1 , equation (16) 

changes to a linear form and if   tend to infinity ( ) then the FD will be 

transformed to the BD. 

In nonlinear equation (12), the parameters and as well as  and   

can be estimated by Nonlinear Least Squares (NLS).  In other words, we 

can estimate the parameters including , which minimizes Residual Sum 

of Squares (RSS). Consequently, we will find highest significant relation 

between ( )s

e

t
t

 and the dependent variable. The start of the shock is 

either observable due to date happened and/or can be found by the break 

point of the Chow test. An important point in FDt  is to select end time of 

the shock effect ( )et . A suggested method is to use a response function of

tY .   

If dependent variable time series is to be non-stationary, we can use 

following function:   
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)13(0

,0

,)(

0,0

)(

0























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tt

ttt
tt

tt

tt

tFD

e

es

el

s
At  

A nonlinear parametric alternative model is Smooth Transition 

Regression (STR) model which introduced Granger and Träsvirta (1994) 

and Träsvirta (1994). In this model, the transition function can be 

parameterized either as a logistic function, in whose case we have a 

logistic STR (LSTR) model: 

    )14(0,exp1,,

1

1





























 
K

k

kttt CSSCGFD

 
or as an exponential function, in whose case we have an exponential 

STR (ESTR) model: 

    )15(0,exp1,,
1










 



K

k

kttt CSSCGFD  

Generally 1K  or 2K are selected. 

 
3.  Money Demand Model Specification 

In this paper, we have used money demand data to compare the 

application of BD, ASTR (AS Transition Function), ESTR and LSTR 

model. 

We use quarterly time series of national real money demand (M), 

national real GDP (G), nominal interest rate (i), GDP deflator Inflation 

(Inf) and exchange rate of US $ in Iran, from 1990:2 to 2008:3 (all 

variables are in constant price of 1997). The data is obtained from 

Central Bank of Iran. Based on these data, we estimate money demand 

function for Iran, and study effect of oil production shock (in 1992) on 

this function. In this year, because of increase in oil production and 

government revenue of oil sales, money volume increased function 

(Abounouri & Shahriyar 2013 & 2014). 
In this paper, money demand function is specified as follows: 

)16(
inf)(

0
321  


i

eERGM
 

Where in logarithmic form is:
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)17(inf)(3210   iLnERLnGLnM  

Here we use 
1M  definition for money volume. 

According to the Chow test in appendix (1), the start point of 

monetary policy shock is observed on 1992:3.  Due to the structural 

break, we have used Philips-Peron unit root test. According to the results 

in appendix (2) summarized in table (1), all variables except EX are 

stationary.  

 
Table 1: P-P Unit Root Test 

series P-P Stat. 
Critical Values 

1% 5% 10% 

M  3.86- -4.08 -3.47 -3.16 

Y -6.29 -4.08 -3.47 -3.16 

I -3.97 -4.08 -3.47 -3.16 

FNI -5.84 -4.08 -3.47 -3.16 

EX -1.42 -4.08 -3.47 -3.16 
     Source: Appendix (2) 

 

4.  Empirical Results 

The nonlinear approach over the BD variable has been justified 

concerning the following practical evidences. Ln(M) is regressed on 

Ln(G(-1)), I-INF and Ln(EX(-2)) including binary dummy variable and 

fuzzy (nonlinear) dummy variables. The estimation and prediction results 

of models are shown in Table (2).  FD is the membership function, and 

estimated as follow:  

)18(

)](0.003[1_

)001.0(_

)
75

(1_

1-

15.0



















tExpESTRFD

tExpESTRFD

tASFD

 

FD=0, before 1992:3. According to the estimated results 15.0
shows nonlinearity of money demand. 

The corresponding transition functions graphs are shown in Figure 

(1); if a structural break (shock) occurs then effect of this shock on 

National money demand is significant and is not equal to 0 for next 

following periods. As it can be seen in Figure (1), Because LOG(M) is 

stationary, AS fuzzy membership function (transition function) for 

shifting between two regimes (before and after structural break) is more 
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rational than the others, consequently shock effect on money demand 

depreciate more rapid. 

 

 
Figure 1: Graphs of the Membership Functions 

 
Table 2: Estimation and Prediction Results 

Model\ 

Variable 

C
o

n
stan

t 

L
n

(G
(-1

)) 

I-INF 

L
n

(E
X

(-2
)) 

B
in

ary
 D

u
m

m
y

 

V
ariab

le 

 /   R2 

A
d

.R
2 

F 

D
.W

 

R
M

S
E

 

Binary 
1.97 -0.37 -0.29 0.07 -0.28 

- 0.62 0.60 27.30 1.84 53.76 
(0.48) (0.05) (0.44) (0.03) (0.04) 

ESTR 
5.42 0.17 0.19 -0.13 

- 
-0.001 

0.58 0.56 23.30 0.91 56.41 
(1.15) (0.09) (0.55) (0.04) (0.0001) 

LSTR 
10.80 0.17 0.18 -0.13 

- 
0.002 

0.58 0.56 23.20 0.90 56.51 
(2.32) (0.09) (0.55) (0.05) (0.0004) 

ASTR 
0.46 0.47 -0.63 0.15 

- 
0.15 

0.69 0.68 38.30 2.06 50.39 
(0.08) (0.04) (0.44) (0.06) (0.05) 

Sources: Appendices (3) and (4) 

 

According to Table 2, all statistics
2R , adjusted

2R , F and D.W., 

clearly indicate that model based on the AS fuzzy dummy variable (AS 

transition function or ASTR model) is preferred to the other models 
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which are based on the Binary dummy variable, ESTR and LSTR. We 

can conclude that ASTR Model has less measuring error 

(misspecification error) than the others. Moreover, based on prediction of 

M, ASTR model has clearly less MSE than the other models; prediction 

results are shown in appendix (4). 

All coefficients of ASTR model except real interest rate are significant 

in %5 probability level. Real interest rate is significant in %16 

probability level. This variable isn’t significant in the other models. 

Whereas according to D.W. statistics in table (2), in spite of ASTR and 

Binary models, ESTR and LSTR models have autocorrelation problem. 

According to theories of demand for money such as transactions demand 

for money and speculative demand for money, elasticity of money to 

GDP and real interest rate should be positive and negative, respectively. 

Whereas if elasticity of money to exchange rate is to be significant, there 

will be money substitution phenomena. These theories are confirmed 

only in ASTR model. For example, despite of transactions theory of 

demand for money in binary model, effect of GDP on demand for money 

is negative. 

Not that intensity parameter   is less than 1 in ASTR model, this 

mean that effect of structural break (as a result of money supply shock) 

has been depreciated overtime. This result is more applicable to 

stationarity and Philips-Perron unit root test.  

 

5.  Summery and Conclusion 

A significant part of the empirical researches has been devoted to the 

search for robust econometric specifications of empirical models of the 

demand for money with the desired property of theoretical coherence.  

For modeling structural breaks in money demand function, we 

proposed a new Smooth Transition Regression (STR) which is named 

ASTR under fuzzy set theory.  The idea in this paper has been to use the 

smooth parametric transition function as well as the logistic  

transition function has been presented by Granger and Teräsvirta (1994), 

F(t) = 1-[(t – ts)/ (te – ts)]
λ , to model endogenously a shock (structural 

break) in demand for money time series. Characteristics of this transition 

function are flexible because at time ts there is an interruption in the 

series, that is, an impulse shock, that fully dissipates by time te. The 

function F(t) is everywhere zero except in the interval (ts,te], with the 

nature of the shock controlled by  0 ≤ λ < ∞. Observe that F(t) → 0 as 
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λ→0, and F(t) → 1 as λ→ ∞.  Thus, the shock is most persistent when λ 

is large.  In fact, when F(t) = 1, using the parametric function is 

equivalent to using a single binary dummy variable in the interval (ts, te]. 

Therefore, we have introduced a fuzzy dummy variable (AS transition 

function) alternative to that of the hard binary dummy variable, 

exponential and logistic transition functions.  

As mentioned above, for purposes of this paper, we estimate money 

demand function of Iran and modeled structural break in 1992:3 by 

ASTR, Binary Dummy Variable, ESTR and LSTR models. The main 

results of this paper can be as follows: 

It is important that researches take into dummy variables as fuzzy sets, 

because measurement of these is ambiguous.   

ASTR model has more mathematical flexible characteristics and better 

results in estimation and prediction. Consequently, ASTR model has less 

misspecification error than the other alternatives. 

ASTR model structural breaks endogenously and involve stationarity 

and non-stationarity of dependent variable time series. In other word, we 

can say that if dependent variable is stationary then effect of shock 

decrease over time then parameters of regression return to before of the 

shock overtime (parameters are time varying). This property was 

observed in money demand function estimated for Iran in this paper. 
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Appendix: Computer base estimation results: 

 
Appendix 1: Chow Breakpoint Test 

 

 
 

Appendix 2: Philips-Perron test results 
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Appendix 3: Computer based estimation results 

 

ASTR Model 
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Binary Model 
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LSTR Model 
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ESTR Model 
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Appendix 4: Predictions results 

 

      
 

      
 

 


