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One of the most important problems in portfolio selection models 

is the ability to provide the optimal number of each share. 

Therefore, in some cases, it interferes with portfolio optimization 
in converting the desired weight per share to the desired number 

per share, unless the results are an integer. Moreover, by applying 

the appropriate strategy, it seems possible to discover the optimal 
stock allocation for significant cases with comparatively large 

stock value. In this regard, this study presents a multi- objective 

portfolio selection model considering cardinality, quantity and 
budget constraints based on a new improved knapsack problem. 

Value-at-Risk (VaR) is considered as the second objective 

function of risk assessment in the knapsack-based portfolio 
selection model. We consider parametric (variance- covariance 

matrix) and non-parametric (historical) approaches to measure 

VaR. The study also uses the best GARCH family models to 
estimate the conditional volatility of return in the variance- 

covariance matrix, which is based on measuring and comparing 

different criteria under various types of GARCH family models.  
Finally, a Non-dominated Sorting Genetic Algorithm II (NSGA 

II) is planned to solve the problem. An actual portfolio of the Iran 

stock market is solved to demonstrate the application of the 
suggested model.  
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 A multi-objective portfolio selection model based on the improved knapsack problem is 

proposed. 

 The proposed model can properly allocate the number of shares to different assets.  

 The proposed model is very suitable for the value of a particular share becomes relatively large.  

 Results show the superiority of the proposed model and the importance of selecting the 

appropriate method for risk measurement in portfolio optimization problems.  
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1. Introduction 
Markowitz (1952, 1959) presented a classical mean-variance model and 

assumed that investors would like to maximize the expected return for an 

appointed to some extent of risk or minimize the risk of the portfolio for an 

appointed expected return. One of the most important and controversial points in 

portfolio optimization models is the type of decision variables used in these 

models. When the type of decision variables in the portfolio optimization models 

is continuous variables, portfolio optimization is involved with the optimal stock 

allocation for significant cases with comparatively large stock value. In order to 

get rid of this weakness, this research focuses on providing a portfolio 

optimization model based on the discrete decision variables. According to the dual 

Lagrangian relaxation method and transformation approaches, Li and Tsai (2008) 

studied a discrete portfolio optimization problem. Bonami and Lejeune (2009) 

presented a nonlinear branch and bound algorithm for the portfolio selection 

model with discrete variables. Anagnostopoulos and Mamanis (2010) 

investigated a portfolio selection model with three-objective, class and quantity 

limitations under nonlinear mixed-integer programming using various multi-

objective evolutionary algorithms. Several test sets have been used to study 

discrete portfolio optimization by Castro et al. (2011).  

In this study, when the cost of purchasing a particular asset becomes 

relatively large, we concentrate on the asset allocation problem, e.g. Berkshire 

Hathaway Inc. Therefore, the portfolio optimization problem is presented on the 

basis of the improved knapsack problem due to the cardinality, quantity and 

budget constraints. Also, Value-at-Risk (VaR) is considered as the second 

objective function for risk assessment in the knapsack-based portfolio selection 

model. (variance- covariance matrix) and non-parametric (historical) approaches 

are used to measure VaR and the results of these approaches are compared with 

each other. The best model of GARCH family models is used to estimate the 

conditional volatility of return in the variance- covariance matrix, which is based 

on measuring and comparing different criteria in different types of GARCH 

family models. Therefore, a Multi-Objective Evolutionary Algorithm (MOEA) is 

planned to solve the problem. Real portfolio of the Iran stock market has been 

solved to demonstrate the application of the suggested model.  

Therefore, we have introduced a multi-objective portfolio selection model 

on the basis of the improved knapsack problem taking into account the cardinality, 

quantity and budget constraints. The proposed model is based on discrete 

variables which permit the manner of some portfolio optimization problems in a 

more down-to-earth approach and present the probability of adding some pure 

specifications to the model. Moreover, using aknapsack type optimization 

strategy, it seems possible to discover the optimal stock allocation for significant 

cases with comparatively large stock value.  

The first objective function maximized the expected return of the portfolio, 

and the second objective function minimized VaR of the portfolio for risk 

assessment in the knapsack-based portfolio selection model. By comparing the 
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results of two sets of objective functions based on different approaches in risk 

measurement, a superior approach in risk assessment is revealed for the knapsack- 

based portfolio selection model. 

Consequently, Pareto optimal frontiers of the mean- parametric VaR 

portfolio selection model were superior to the Pareto optimal frontiers of the 

mean- nonparametric VaR portfolio selection model. These results show the 

importance of selecting the appropriate method for risk measurement in portfolio 

optimization problems.  

The structure of the paper is as follows. In section 2, an overview of the VaR, 

different types of GARCH family models and NSGA II are presented. According 

to the knapsack problem, the multi-objective portfolio optimization problem 

considering the cardinality, quantity and budget constraints is presented in section 

3. Section 4 reports the computational results of the numerical example. 

Eventually, the main results are presented in section 5. 

 

2. Literature Review 

In the Markowitz’s model, the investment risk was measured by the variance 

of the return. Variance is recognized as a symmetric risk evaluation case and has 

been pilloried by numerous scholars. In addition, estimating the variance error  

reduces the quality of the capital distribution. Among the various methods of risk 

measurement, VaR is one of the most popular alternative methods (Jorion, 1997).  

Some studies focus on combined VaR-based approaches. Combination of 

copula functions and Generalized Auto-Regressive Conditional 

Heteroscedasticity (GARCH) model has been used to estimate a mean-VaR 

portfolio optimization problem (Huang et al., 2009) and the Markov switching 

approach has been used to examine a portfolio optimization problem with VaR 

constraint (Yiu et al., 2010; Zhu et al., 2016). 

Other studies have compared different methods of measuring VaR. For 

example, Ranković et al. (2016) presented a mean- univariate GARCH VaR based 

on the Markowitz theorem and compared its results with the mean- historical VaR 

model. Banihashemi and Navidi (2017) introduced a mean- conditional Value-at-

Risk (CVaR) model and compared its results with the mean- VaR portfolio 

optimization using Data Envelopment Analysis. Meghwani and Thakur (2018) 

and Guo et al. (2019) presented cardinality constrained portfolio optimization 

problem under several risk measures such as variance, VaR and CVaR and 

compared them. Besides, Lwin et al. (2017) compared five meta-heuristic 

algorithms for mean-VaR Markowitz model.  

 

2.1 Review of Literature on VaR 

Among the various types of risk assessments, VaR (Morgan, 1996) is a very 

common method for risk measurement in financial markets. VaR measures the 

worst expected loss of a portfolio over a scheduled period at a given confidence 

level. VaR is defined in the Eq. (1):  
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 t tPr R VaR ,                                                                                         (1) 

where
tR is the portfolio return at time t  and  is the confidence level.

   1

tt RVaR F ,    1

tRF 
is the cumulative distribution function of 

returns. 

Different methods are used to compute VaR such as the parametric approach 

(variance–covariance matrix), the nonparametric approach (historical simulation) 

(Pritsker, 2006), and Monte Carlo simulation methods (Linsmeier & Pearson, 

2000). In parametric estimation, it is assumed that the financial returns follows a 

probability distribution function such as a normal distribution function with the 

parameters , 2 . In the nonparametric approach, there is no assumption about 

the distribution function. However, it is assumed that the financial returns 

behavior is the same as its past behavior. Monte Carlo simulation using statistical 

sampling and random scenarios provides approximate answers to quantitative 

problems. Pagan and Schwert (1990) studied the performance of parametric and 

nonparametric methods. The application of these methods is greatly influenced 

by the needs of analysts, decision-making authorities of the organization, the type 

of assets under study, the accuracy and speed of the calculations and other 

considerations. 

The historical approach is a non-parametric method based on previous 

information. This approach assumes that the near future is closely related to the 

past so that past information can be used to predict future risks (Alexander, 2009). 

To estimate VaR, it is enough to extract the  percentile of the return distribution. 

To better define this approach,  t X is defined in the Eq. (2): 

 
1

1 2
n

t i it

i

X x r , t , ,...,T


                                                                                  (2) 

where  t X is the portfolio return under scenario, ,t
itr is the observed 

return of asset i at time ,t
tx denotes the number of asset i  ( 1,2,..., )i n , and

T represents the time series length. 

Therefore, the total return of the portfolio is in the Eq. (3): 

   
1

T

P t t

t

E R X ,


                                                                                                    (3) 

where 
t is the probability of scenario .t We assume that the probability of 

all scenario are equal to  1 .t T  Therefore, the VaR based on the  percentile 

of the return distribution using the historical data can be formulated in the Eq. (4):
 

   1

1

T

t P t t

t

VaR R inf X | .  



 
   

 
                                                                     (4) 
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It should be noted that returns should be sorted ascending

      1 2 TX X ... X .     

On the other hand, the analytical VaR is a parametric method that its return 

is defined in the Eq. (5): 

t t tR ,                                                                                                                     (5) 

where
tR is the return at time t , 

t is the conditional mean of the return

  1t t tE R |   , and
1t is the information of the previous period). 

t is 

the return shock (  1| 0,t tE    (  2 2

1t t tE | ,    20t tD ,  ) and the 

more detailed definition of
t is written in the Eq. (6): 

t t tv ,                                                                                                                      (6) 

where in
t is the conditional volatility of the return and tv is the 

innovation sequence       20 1 0 1t t tE v , E v , v iid ,   . All models can be 

estimated with the assuming a normal distribution or a  Student t distribution. 

The maximum likelihood estimation of the normal distribution can be formulated 

in the Eq.(7): 

   
2

2

2

1 1 1
2

2 2 2

T
t

t

t t

L ln ln ,







 
     

 
                                                                (7) 

where in   is the number of observations that are lost in the estimation 

process. The maximum likelihood estimation of the Student t distribution can be 

formulated in the Eq. (8): 

 
 

2
2

2

1 1
1

2 2 2

T
t

t

t t

L ln ln ,





 

  
         
                                              (8) 

where in  is the degrees of freedom. Since the financial returns typically 

maintain wider sequences, the standardized Student t  distribution better 

describes their characteristics. Therefore, VaR is defined in the Eq. (9): 

 1

1t t tVaR h t h,

  

                                                                                        (9) 

where 
t is the conditional mean of the return, h is the time horizon,

 1t 
is quantile  of the standardized Student t distribution 

    0 1t iid ,  with  degrees of freedom and
t is the conditional volatility 

of the return. In this study,
t is estimated using GARCH family models. In 

estimating GARCH parameters, the conditional mean is dominated by the 
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standard deviation of returns (see Ranković et al., 2016; Pritsker, 2006; 

Alexander, 2009; Christoffersen, 2011). This implies:  

 1

1t tVaR t h .

 

                                                                                                 (10) 

In order to compute the VaR for a multiple asset’s portfolio

  1 2 nX x ,x , ,x ,  H is defined as the conditional variance– covariance 

matrix of the returns. Thus, the variance can be written more compactly in the Eq. 

(11): 
2

P X HX                                                                                                                  (11) 

Therefore, the VaR of a multiple asset’s portfolio can be obtained in the Eq. 

(12): 

     
1 2 1

1 1t tVaR X X H X t h .

 

 
                                                                    (12) 

In this study, the conditional variance–covariance matrix of the returns ( H

) is calculated based on the estimation of GARCH family models. 

 

2.2 Review of Literature on GARCH Family Models 

Among the various types of time series models, GARCH family models have 

had successful performance in modeling and forecasting conditional volatility of 

return. Engle (1982) presented the Autoregressive Conditional Heteroskedastic 

(ARCH) model. The main idea of this model is that the return shocks do not have 

a serial correlation, but are nonlinearly related to each other, which can be 

explained by a quadratic function. The ARCH (q) model can be formalized in the 

Eq. (13): 

2 2

0

1

q

t i t i

i

,    



                                                                                                        (13) 

where
0 0 0i,   and 

2

t is the conditional variance of
t .  

Note that the ARCH model typically requires estimating a large number of 

parameters. Moreover,  a specific and predetermined structure must be applied to 

avoid the negative values of the estimated variance. Therefore, Bollerslev (1986) 

extended the Engle model and presented a group of models known as Generalized 

ARCH (GARCH) model. The GARCH (p, q) model can be formulated in the Eq. 

(14): 

2 2 2

1 1

q p

t i t i j t j

i j

,      

 

                                                                                      (14) 

where 0 0 0i j, ,     , and
1 1

1
q p

i j

i j

 
 

   . 
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For example, GARCH (1, 1) is a special branch of the GARCH model, which 

has an acceptable ability to examine financial time series (see So & Philip, 2006). 

GARCH (1, 1) can be formulated in the Eq. (15): 
2 2 2

1 1t t t .                                                                                            (15) 

Based on the general GARCH model, several models have been extended 

that emphasize on specific features of financial data. For instance, in the 

Integrated GARCH (IGARCH) model, the Eq. (16) is imposed on coefficients 

(see Engle & Bollerslev, 1986). 

1 1

1
q p

i j

i j

. 
 

                                                                                                     (16) 

One of the limitations in the GARCH model is that the effects of positive 

and negative shocks are considered, symmetrically. Therefore, Nelson (1991) 

presented the Exponential GARCH (EGARCH) model. The EGARCH (p, q) 

model can be formalized in the Eq. (17): 

2 2

1 1 1

2p q q

t i t i
t j t j i i

j i it i t i

ln ln .
 

     
 

 


   

 
     

  
                     (17) 

 Glosten, Jagannathan, and Runkle (GJR) -GARCH is another asymmetric 

model presented by Glosten et al. (1993). The GJR-GARCH (p, q) model can be 

formulated in the Eq. (18): 

2 2 2 2

1 1 1

q p q

t i t i j t j i t i t i

i j i

I ,          

  

                                                   (18) 

where
t iI 

is the difference between positive and negative shocks, If

0t i    then 0t iI   else 1t iI   . Also, 0 0 0 0i j i, , ,       , and

1 1 1

1
1

2

q p q

i j i

i j i

  
  

     . 

Finally, more information on GARCH family models can be found in 

Guidolin and Pedio (2018). To use GARCH family models, the time series should 

pass the Augmented Dickey-Fuller (ADF) test (Dickey & Fuller, 1979) , Ljung–

Box Q test and the ARCH-LM test (Engle, 1982). Accordingly, the optimal model 

is selected based on the minimum Akaike Information Criteria (AIC) (Akaike, 

1974), the minimum Schwarz Information Criteria (SIC) (Schwarz, 1978) and the 

minimum Hannan–Quinn Information Criteria (HQIC) (Hannan & Quinn, 1979). 

The Akaike Information Criterion (AIC): 

 2 2log .maxAIC k L                                                                                           (19) 

The Schwarz Information Criterion (SIC): 

   maxln 2ln .SIC n k L                                                                                       (20) 

The Hannan-Quinn Information Criterion (HQIC):  
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    max2ln ln 2ln ,HQIC n k L                                                                  (21) 

Where in k is the number of parameters, n is the number of observations 

and
maxL is the maximum likelihood estimation. 

Figure 1 describes the steps and how to choose the best model among the 

GARCH family models: 

 

 
 

Figure 1. Framework of the approach. 
Source: Engle (1982) and Bollerslev (1986) 

 

2.3 Review of Literature on NSGA-II 

Portfolio optimization on the basis of  the knapsack problem is NP-complete 

(Böckenhauer et al., 2012; Kellerer et al., 2004). Thus, a meta-heuristic method is 

applied. Multi-objective genetic algorithm is a population-based algorithm and is 

very proper for solving multi-objective optimization problems (Fonseca & 

Fleming, 1993) . One of the multi-objective optimization methods on the basis of 

the genetic algorithm is NSGA-II, which is presented by Deb et al. (2002). In fact, 

this algorithm is an improved NSGA introduced by Srinivas and Deb (1994). In 

this approach, there are three main concepts including: (I) dominance; (II) non-

dominated sorting; and (III) a diversity of solutions that form the basis of multi-

objective optimization. 

(I) The concept of domin ance can be expressed below. In a minimization 

problem with more than one objective function, the point X dominates point Y if 

and only if Y has no better aspect than X and at least one aspect of X is much 
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better than Y. Points that meet these conditions are considered the first front 

(Fonseca & Fleming, 1995) . Assume that the objective functions are in Eq. (22): 

      

 

1 2, ,...,

. : 0,

nMinimize f X f X f X

s t g X






                                                               (22) 

where X is the vector of the decision variable ( 1 2, ,..., nx x x ) and  if X

is the objective function .i Therefore, the concept of dominance can be 

formulated in Eq. (23) and Eq. (24): 

     , 1,2,...,i if X f Y for all i n                                                                   (23) 

     , 1,2,..., .i if X f Y for at least one i n                                         (24) 

(II) In a multi-objective optimization problem with at least two objective 

functions, the concept of non-dominated sorting of solutions can be expressed in 

the following. In many cases, we cannot compare the solutions with the concept 

of dominance. In fact, some solutions may not be dominated other and it may not 

be easy to make a definitive decision about some solutions. Therefore, to get the 

best solutions, they should be sorted according to specific criteria. In this 

algorithm, each solution is assigned a rank based on the number of times the 

solution dominated other solutions. At the end of the algorithm, that have the best-

ranked solutions (front 1) are selected as the answer set or the Pareto front (see 

Rey Horn et al., (1993)).  

(III) Sometimes the members of an answer set have the same rank. In these 

cases, the solutions are compared and some are removed. The concept of diversity 

is used to remove some members of the answer set. In this approach, solutions 

that are regular in each interval of the answer set are selected. This process is 

based on the crowding distance operator which can be formulated in Eq. (25) and 

Eq. (26): 

1 1

max min

,

j j

i ij

i j j

f f
Cd

f f

 



                                                                                                (25) 

1

,
n

j

i i

j

Cd Cd


                                                                                                                  (26) 

where
j

iCd is crowding distance i of objective function j .
iCd is the 

total crowding distance of all objective functions. 1

j

if  and 1

j

if  are the values 

of objective functions j in solution 1i  and 1,i  respectively. In addition,

max

jf is the maximum value of the objective function j and min

jf is the minimum 

value of the objective function .j   

Any point that has a greater crowding distance means that it covers more 

range of the solution space, and its removal leads to the loss of solution diversity 
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in a wide range of solution space. Therefore, the points of the solution set in a 

frontier with less crowding distance should be eliminated until the initial 

population remains constant. In addition, the starting and ending points of this set 

are important points that must necessarily be among the solutions (Deb et al., 

2002, 2000). 

In addition, there are other general sections such as, (IV) calculating the 

objective functions and (V) creating an initial population. (VI) Another part of 

this algorithm is associated with two types of operators for generating parent and 

offspring. In other words, to create diversity in the population, recombine the pairs 

of parent and mutate the offspring. Usually, the probability of recombining the 

parent pairs or the crossover rate  cp is chosen between 0.6 and 0.9 and the 

probability of mutating the offspring or the mutation rate  mp is chosen between 

0.05 and 0.2. 

Now, according to the mentioned definitions, the NSGA-II steps can be 

described in Algorithm 1: 

  

       Source: Deb et al. (2002). 
 

Algorithm 1. Pseudocode of NSGA-II 

Assume that
1 2( ), ( )f X f X are the objective functions of 

 1 2, ,..., ;
T

nX x x x  

Give value for ,c mp p and Max Iteration ; 

Create initial population randomly  0N ; 

Evaluate objective functions; 

Assign rank using fast non-dominated sorting; 

Recombine pairs of parents; 

Mutate the offspring; 

while  at M x Iteration do 

           for  1:i NumberGeneration  do 

                Assign rank using fast non-dominated sorting; 

                Build set of non-dominated solution; 

                Determine crowding distance; 

           End  

           For  Lengthof population N do 

                   Build the current Pareto front based on the lower front and high 

crowding distance; 

           End 

          1;t t   

          Recombine and Mutate; 

End 

Show result and visualization. 
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3. Proposed Model 
In order to easily explain the mean-VaR portfolio optimization problem on 

the basis of  the improved knapsack problem, the following symbols are applied: 
,n  the whole number of available assets; 

,k  the desired number of assets that can be selected in the 

portfolio; 

,B  the whole budget; 

,ip  the average price of asset i during the period; 

,iu  the upper bound of asset ;i   

,il  the lower bound of asset ;i  

,  the confidence level; 

 1 ,t PVaR R

  the estimated VaR of a portfolio at confidence level ;  

   ,PE R  the expected return of a portfolio; 

,ix  the integer variable that illustrate the number of asset ;i  

,iy  the binary variable specifying whether asset i is contained in 

a portfolio or not. 1,iy   if asset i is contained in a portfolio, 

and 0iy  differently. 

The multi-objective portfolio selection model based on the improved 

knapsack problem can be formulated in Eq. (27) to Eq. (33): 

 

 

 1

11

1

1 2

1 2

0 1 1 2

P
X

t P
X

n

i i

i

n

i

i

i i i i i

i

i

maximize E R

minimize VaR R

s.t :

p x B,
M

y k ,

l y x u y , i { , ,...,n },

x int, i { , ,...,n }.

y { , }, i { , ,...,n }.























    


 
  





  

     (27) 

 

(28) 

 

 

(29) 

(30) 

(31) 

(32) 

(33) 

The target function given in Eq. (27) tries to choose a portfolio that has the 

maximum expected returns. Also, the objective function given in Eq. (28) 

attempts to measure the worst expected loss of a portfolio. VaR is measured 
according to the following approaches: Parametric approach 
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In the parametric approach, the variance-covariance matrix is used to 

estimate the VaR. Therefore, Eq. (28) is defined according to Eq. (12) 

     
1 2 1

1 1t tVaR X X H X t h

 

 
 . for more accurate and better estimates, 

GARCH family models are used to estimate GARCH family models that have 

performed successfully in modeling and forecasting the conditional volatility of 

return.  Thus, this model is called the mean-GARCH (the best model of GARCH 

family models) VaR portfolio optimization problem on the basis of the knapsack 

problem. 

1) nonparametric approach 

In the non-parametric approach, historical simulation is used to estimate the 

VaR. Therefore, Eq. (28) is defined according to Eq. (4)

   1

1

T

t P t t

t

(VaR R inf X | )  



 
   

 
 . Thus, this model is called the mean- 

historical VaR portfolio optimization problem on the basis of the knapsack 

problem.  

Finally, the results of solving the proposed selection model are compared 

with each other and the best risk measurement approach of the proposed model is 

introduced. 

Eq. (29) defines the budget constraints that states that the sum of the weights 

of the total assets is less than or equal to the financial plan. Eq. (30) defines the 

cardinality constraint which guarantees that a portfolio contains exactly k assets.

1,iy   if asset i is involved in a portfolio, and 0iy  otherwise. Eq. (31) 

defines the floor and ceiling constraints. If asset i is selected ( 1iy  ), the 

proportion of capital
ix lies in  ,i il u . 

Eq. (32) and Eq. (33) define the decision variables. 𝑥𝑖(∀𝑖 ∈ {1,2, … 𝑛}) is the 

integer variable that represents the number of asset 𝑖. 𝑦𝑖(∀𝑖 ∈ {1,2, … 𝑛}) is the 

binary variable indicating whether asset i is involved in a portfolio or not. 

The decision variables of the Markowitz model are continuous variables, 

while the decision variables of the knapsack-based portfolio optimization are 

binary (Sahni, 1975) and (or) integer (Kellerer et al., 2004)  variables. Therefore, 

the knapsack problem is more suitable for asset allocation in some cases compared 

to Markowitz theorem. Besides, using the knapsack type optimization approach, 

we determine the optimal asset allocation in certain specific cases with 

comparatively immense stock value. For example, suppose a portfolio consists of 

three assets with three weights of 0.5, 0.3 and 0.2, and we intend to assign one 

million dollars for these three shares with market prices of 1200$, 1800$ and 

340,000$, respectively. Thus, the number of shares is 416.666, 166.666 and 0.588, 

respectively. As we can observe, 416.666 and 166.666 are non-integer number 

and the third value does note yield a feasible allocation of asset (Vaezi et al. (2019, 

2020). In the following, the different aspects and benefits of the suggested model 

are explained. 
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 The suggested model maximizes the expected returns on the portfolio and 

minimizes the worst expected loss to the portfolio, simultaneously. 

 The mean-VaR portfolio optimization problem on the basis of the 

improved knapsack problem, considering the cardinality, quantity and budget 

constraints can decently assign the number of shares to various assets. 

 In the suggested model, Parametric (variance-covariance matrix) and 

nonparametric (historical) approaches is considered to measure VaR.  

 The best model of GARCH family models is used to estimate the 

conditional volatility of return in the variance-covariance matrix, which is based 

on measuring and comparing different criteria in different types of GARCH 

family models. The study also concentrates on the multi- objective portfolio 

optimization with discrete variables to remove the gap of share rounding. 

 The proposed model is based on discrete variables that permit the manner 

of some portfolio optimization problems in a more down-to-earth approach and 

present the probability of adding some pure specifications to the model. 

 Moreover, using a knapsack type optimization strategy, it seems feasible 

to discover the optimal stock allocation for significant cases with comparatively 

large stock value. 

 

4. Empirical Analysis 

In this section, an actual portfolio is provided to explain the performance of 

the proposed model. The numerical example involves the shares of the Iranian 

stock market shares and includes daily time series data  1h  from 26/5/2016 

to 26/5/2021; totaling 1000 trading days. 

Let     1ln ln 100t t tR p p    denote the continuously compounded 

rate of asset returns (see Morelli, 2002), where
1tp 

and
tp are the asset prices 

at time 𝑡 − 1 and ,t  respectively. In addition, the volatilities of the returns were 

estimated using GARCH family models. The following process should be used to 

select the appropriate model among the GARCH family models: 

The first step in this process is to examine whether the distribution of the 

Iran stock market returns is normal or not and to have an overview of the basic 

statistical features for each of  the Iranian stock market returns series is essential. 

Therefore, table 1 presents the average, median, maximum, minimum, standard 

deviation,  skewness, kurtosis, and JB information for each of the series of the 

Iranian stock market returns. 

Finally, the distance between the maximum and minimum value of the 

returns in each time series and their standard deviation causes relatively large 

fluctuations in the series of returns of the Iranian stock market in the sample 

period. Also, the amount of kurtosis in each return series is much higher than the 

standard value of the normal distribution (+3). This indicates that the distribution 
of the return series of Iranian stock market has the characteristics of ‘sharp peak’ 

and ‘fat tail’. In addition, its JB stats for each return series are much higher than 
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the JB value of the standard normal distribution. Therefore, the null hypothesis 

that the return series is subject to a normal distribution is rejected. As a result, , 

the Iranian stock market returns series do not have a normal distribution and have 

Skewness (Panel A). 

The second stage is the static study of the Iranian stock market return series 

with the unit root test statistics. The Augmented Dickey-Fuller (ADF) and KPSS 

are used for all of the time series. The results show that the ADF and KPSS values 

of the whole yield series are much smaller than 1% of the critical value and the P- 

values  are 0  0.05 ,p  also indicative of the significance at the 1% level. 

Therefore, all series are at a fixed level (Panel B).  

Often, when residuals are correlated with each other over time, there are 

clustering fluctuations in financial time series. Hence, if conditional variance is 

assumed as a self-correlated function and is affected by previous residuals, 

modeling the clustering volatility is performed. In fact, this model allows the 

effect of a shock not to disappear quickly over time (see Dana, 2016). Therefore, 

the third step in this process is to examine the effects of ARCH in each return 

series of Iranian stock market. The ARCH-LM test is applied to examine the 

effects of ARCH. To estimate regression for the ARCH-LM test, the lag order is 

determined based on the smallest AIC and the largest F statistic (see Gökbulut & 

Pekkaya, 2014; Mamipour & Vaezi Jezeie, 2015). Therefore, the optimal lag order 

is 1 (ARCH (1)) for all of the return series. In addition, the optimal lag order of 

ARCH model is obtained using Correlogram of Residuals Squared (Ac and PAC). 

Therefore, the optimal lag order is 1 for all of the return series. Finally, the results 

show that the value of the F or R-square statistic is less than 5% of the critical 

value. Therefore, the null hypothesis of the ARCH-LM test must be rejected. This 

means that the F and R square statistics confirm the effects of ARCH in 20 series 

of returns out of  32 series of returns of the Iran stock market.  Now, we can use 

the GARCH family models for estimating the conditional return fluctuations 

(Panel C). 

Note that the estimates will not be accurate and efficient, if the above are not 

checked for using GARCH family models. Therefore, the results will not be valid. 

All results are presented in Table 1. 
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Table1. Descriptive statistics, unit roots tests and ARCH-LM tests 

 𝑹𝑺𝟏 𝑹𝑺𝟐 𝑹𝑺𝟑 𝑹𝑺𝟒 𝑹𝑺𝟓 𝑹𝑺𝟔 𝑹𝑺𝟕 

Panel A: Descriptive statistics  

Observations  1000 1000 1000 1000 1000 1000 1000 

Mean  0.194586  0.249327  0.279560  0.344201  0.136960  0.253335  0.315650 

Median  -0.065650  0.028700  0.005550  0.047850 -0.063050  0.000000  0.059650 

Maximum  16.27470  17.86160  17.30090  11.19210  44.80910  17.26990  17.89760 

Minimum  -10.05980 -10.17510 -9.940200 -7.203100 -8.861100 -5.129300 -5.129300 

Std. Dev.  2.512264  2.737893  2.787408  2.428766  2.846338  2.543499  2.469925 

Skewness  0.294392  0.329995  0.308139  0.222108  4.026733  0.380104  0.613941 

Kurtosis  5.122603  5.050061  4.276992  3.483230  63.08498  4.763240  6.078457 

JB  202.1713*  193.2641  83.77109  17.95165  153127.6  153.6221  457.6914 

Panel B: Unit root test statistics 

ADF -22.13651* 

(0.0000) ** 

-22.13651 

(0.0000) 

-21.84142 

(0.0000) 

-14.71584 

(0.0000) 

-23.05562 

(0.0000) 

-21.15619 

(0.0000) 

-14.74544 

(0.0000) 

KPSS*** 0.187437 0.086574 0.081640 0.089483 0.207558 0.153307 0.081041 

Panel C: ARCH-LM tests: ARCH (1)- Optimal lag:1 

F-statistic 

 

22.95892* 

(0.0000) ** 

10.81843 

(0.0010) 

31.56339 

(0.0000) 

54.50891 

(0.0000) 

72.07124 

(0.00001) 

61.88803 

(0.0000) 

9.124355 

(0.0026) 

Obs*R-

squared 

22.48714* 

(0.0000) ** 

10.72377 

(0.0011) 

30.65618 

(0.0000) 

51.78692 

(0.0000) 

67.34740 

(0.0001) 

58.38780 

(0.0000) 

9.059745 

(0.0026) 

 
Table 1(continued). Descriptive statistics, unit roots tests and ARCH-LM test. 

 

 

 

 
 

 𝑹𝑺𝟖 𝑹𝑺𝟗 𝑹𝑺𝟏𝟎 𝑹𝑺𝟏𝟏 𝑹𝑺𝟏𝟐 𝑹𝑺𝟏𝟑 𝑹𝑺𝟏𝟒 

Panel A: Descriptive statistics  

Observations  1000 1000 1000 1000 1000 1000 1000 

Mean  0.246704 0.265756 0.264079 0.235046 0.144038 0.164924 0.298804 

Median   0.026700 -0.023150  0.000000  0.020700 -0.017950 -0.007900  0.005200 

Maximum   15.48850  11.44370  15.10480  14.47630  9.716400  9.159600  20.99630 

Minimum  -8.282800 -10.22770 -10.25140 -5.129000 -10.17340 -5.129300 -6.049300 

Std. Dev.   2.407994  2.306047  2.355343  2.416607  2.206189  1.985585  2.378421 

Skewness   0.242486  0.168991  0.312181  0.495790  0.142336  0.273030  0.861282 

Kurtosis   4.968264  4.660646  5.177599  5.218276  4.354207  4.663851  9.771237 

JB   171.2192  119.6657*  213.8235  245.9991  79.78808  127.7742  2034.036 

Panel B: Unit root test statistics 

ADF -21.61128 

(0.0000) 

-15.26661* 

(0.0000) ** 

-22.42845 

 (0.0000) 

-22.42414  

(0.0000) 

-21.41658  

(0.0000) 

-20.77727  

(0.0000) 

-23.80032  

(0.0000) 

KPSS*** 0.150785 0.189302 0.153309 0.135940 0.149653 0.163348 0.120051 

Panel C: ARCH-LM tests: ARCH (1) -Optimal lag:1 

F-statistic 16.61804 

(0.0000) 

173.3152* 

(0.0000) ** 

57.49928 

 (0.0000) 

24.95196  

(0.0000) 

231.4656  

(0.0000) 

243.6131  

(0.0000) 

5.573194  

(0.0184) 

Obs*R-

squared 

16.37838 

(0.0001) 

147.9447* 

(0.0000) ** 

54.47304  

(0.0000) 

24.39157  

(0.0000) 

188.2300  

(0.0000) 

196.1687  

(0.0000) 

5.553331  

(0.0184) 
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Table 1(continued). Descriptive statistics, unit roots tests and ARCH-LM test. 

 𝑹𝑺𝟏𝟓 𝑹𝑺𝟏𝟔 𝑹𝑺𝟏𝟕 𝑹𝑺𝟏𝟖 𝑹𝑺𝟏𝟗 𝑹𝑺𝟐𝟎 

Panel A: Descriptive statistics  

Observations  1000 1000 1000 1000 1000 1000 

Mean   0.155193  0.284443  0.240835 0.324616 0.361129  0.241878 

Median   0.000000  0.000000  0.009750 -0.013500  0.000000 -0.028950 

Maximum   13.36060  23.87580  9.145400  19.64680  22.74480  10.31080 

Minimum  -37.48830 -12.27560 -5.821000 -7.956900 -13.87390 -16.60240 

Std. Dev.   2.457393  2.947481  2.029996  2.735206  2.299747  2.938791 

Skewness  -3.238543  0.687062  0.287326  0.502565  1.113789 -0.270471 

Kurtosis   58.05501  7.606584  4.366210  5.688044  14.19757  4.412281 

JB   128041.9  962.8681  91.53136* 343.1611 5431.157  95.29810 

Panel B: Unit root test statistics 

ADF -13.52366  

(0.0000) 

-13.13226  

(0.0000) 

-15.47148* 

 (0.0000) ** 

-22.40386 

 (0.0000) 

-23.60082 

 (0.0000) 

-22.15690 

 (0.0000) 

KPSS*** 0.34000 0.089873 0.143690 0.096993 0.345968 0.126374 

Panel C: ARCH-LM tests: ARCH (1)- Optimal lag:1 

F-statistic 22.47599  

(0.0000) 

28.89527  

(0.0000) 

49.48604* 

(0.0000) ** 

24.93015  

(0.0000) 

20.98615  

(0.0000) 

11.01400  

(0.0009) 

Obs*R-

squared 

22.02457  

(0.0000) 

28.13774  

(0.0000) 

47.24053* 

(0.0000) ** 

24.37076  

(0.0000) 

20.59474  

(0.0000) 

10.91551  

(0.0010) 

*Denotes rejection of the null hypothesis at the 1% level. 
**Denotes significance at 1% level. 
*** Asymptotic critical values for the KPSS test are 0.739, 0.463 and 0.347 at the 1, 5 and 10% levels, 
respectively.  

Source: Research findings and http://tsetmc.ir/ 

 
After evaluating the time series according to the main test, different types of 

GARCH models are estimated according to different values of p and q. Then, the 

optimal model is selected according to the minimum AIC, minimum SIC or 

minimum HQIC. The results show that EGARCH (2, 2) is the optimal model for 

all series. Therefore, EGARCH (2, 2) is used to estimate the conditional volatility 

of return in the parametric approach. Finally, the mean-EGARCH (2, 2) VaR 

portfolio selection model is ready to analyze on the basis of the knapsack problem.  

Also, for the historical-VaR calculation, a confidence level (  ) is 

considered 95%. Therefore, the mean-historical VaR portfolio selection model 

based on the knapsack problem is ready for analysis and comparison with the 

results of the mean-EGARCH (2, 2) VaR portfolio selection model. 

Table reports the information of historical VaR and the conditional volatility 

of return of each stock. In addition, the upper bound, lower bound, return and 

price of each stock are reported in Table 2: 

 

 

 

 

http://tsetmc.ir/
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Table 2. Information of historical VaR, conditional volatility of return,  

price, return, lower and upper bound of each stock 

Number 

of 

stocks 

i
P

 i
R %

 
il  iu  historical-

VaR(95%) 
𝝈𝒊,𝒕

𝟐  

EGARCH(2,2) 

S1 5180.8 0.1946 2 15 4.7742 3.831068 

S2 14758 0.2493 3 20 4.8223 11.405114 

S3 9046.7 0.2796 5 23 4.86 12.576639 

S4 6237.3 0.3442 5 100 4.7892 6.061393 

S5 3095.9 0.1370 1 10 4.7525 44.883326 

S6 5022.3 0.2533 11 27 4.7801 7.4934116 

S7 8487.7 0.3157 10 45 4.7105 3.990445 

S8 6140.9 0.2467 7 30 4.7287 4.124969 

S9 8626.5 0.2658 3 40 4.696 20.785119 

S10 6013 0.2641 12 80 4.6683 2.136817 

S11 25795 0.2350 8 21 4.6578 9.284352 

S12 22281 0.1440 10 100 4.6007 4.849718 

S13 22759 0.1649 10 28 4.5214 4.144770 

S14 31900 0.2988 20 100 4.5370 0.256803 

S15 3699.9 0.1552 8 17 4.6695 16.890506 

S16 7623.8 0.2844 2 13 4.857 13.977827 

S17 18587 0.2408 1 12 4.4347 0.790044 

S18 17689 0.3246 9 26 4.8029 4.904840 

S19 36614 0.3611 4 19 4.6210 12.855087 

S20 19931 0.2419 5 18 4.8267 5.440757 
Source: Research findings and http://tsetmc.ir/ 

 
Note that the lower and upper bounds of each share are randomly created and 

the budget is assumed to be 3000000IRR.  

Therefore, the exact solutions of the mean-historical VaR portfolio 

optimization based on the knapsack problem are calculated using GAMS 

software. All results are presented in the Table 3: 

 
Table 3. Exact solution of the mean-historical VaR portfolio optimization  

with different cardinality 

 K=5 K=6 K=7 K=8 K=9 

 PE R  15.747% 15.358% 14.766% 14.096% 13.304% 

 PVaR R  42.538% 57.005% 75.489% 99.435% 129.384% 

ix  X1=2; 

X4=33; 

X5=1; 

X6=13; 

X16=2 

X1=2; 

X4=29; 

X5=1; 

X6=12; 

X15=8; 

X16=2 

X1=2; 

X4=23; 

X5=1; 

X6=11; 

X8=7; 

X15=8; 

X16=2 

X1=2; 

X4=18; 

X5=1; 

X6=12; 

X8=7; 

X9=3; 

X15=8; 

X16=2;  

 

X1=2; 

X4=15; 

X5=1; 

X6=12; 

X8=7; 

X9=3; 

X15=8; 

X16=2;  

X17=1 
Source: Research findings  

 

http://tsetmc.ir/
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In the following, the results of the exact solutions are compared with the 

NSGA-II solutions in the mean-historical VaR portfolio optimization problem. 

Hence, the Pareto optimal frontiers of the exact method and NSGA-II must be 

provided. Therefore, to find the exact Pareto sets in the mean-historical VaR 

portfolio optimization problem, 𝜀 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 method is used t. In additions, 

the following is used to find the NSGA-II Pareto sets in the mean-historical VaR 

portfolio optimization problem. 

In the study, the initial population is randomly generated. Generic encoding 

is provided in the form of a simple example of the representation in Figure 2: 

 
 S

1 

S

2 

S3 … Sn-2 Sn-1 Sn 

1 2{ , ,..., } {0,1}i ny y y y   1 0 1 … 0 1 0 

1 2{ , ,..., } inti nx x x x   5 3 10 … 6 12 9 

Figure 2. Generic encoding. 
Source: Research findings 

 

In Figure 2, the first row is a binary string that shows whether an asset is 

involved in a portfolio. The second row contains a string of integers that represents 

the number of each asset and is located between its upper and lower bounds.  

In addition, a single point crossover is provided to produce a parent 

population. In this operator, a random position is selected along the string and the 

genes of the two parent chromosomes together change from the selected position 

to the end of the string (see Spears & De Jong, 1991). In addition, a swap mutation 

for permutation is considered to generate an offspring population. This operator 

chooses two genes from a chromosome randomly and then changes their positions 

(see Holland, 1992).  

Next, the Taguchi method is used to select the appropriate parameters such 

as crossover rate  cp , mutation rate  mp , number of iterations and population 

size of the NSGA-II at three different levels. {0.7, 0.8, 0.9}, {0.05, 0.2, 0.3}, {50, 

100, 500} and {100, 500, 1000} are employed for the crossover and mutation 

rates, population size and number of iterations, respectively. This method is used 

for both proposed models and both sets of objective functions. Therefore, the 

results of the proposed NSGA-II parameter adjustment for both models and both 

sets of objective functions based on the Taguchi method are reported in Table 4: 
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Table 4. Parameter setting of NSGA-II 

 Crossover 

rate 

Mutation 

rate 

Population 

size 

Number of 

iterations 

Mean- historical VaR model  0.8 0.3 100 1000 

Mean- EGARCH (2, 2) VaR 

model 

0.9 0.2 100 500 

Source: Research findings  

 

The GAMS Pareto optimal frontiers and the NSGA-II Pareto optimal 

frontiers of the mean-historical VaR portfolio optimization on the basis of the 

knapsack problem with cardinality k = 5, 6 are shown in Figure 3. 

 

 
 

 
Figure 3. Exact and NSGA-II Pareto optimal frontiers of 

 the mean- historical VaR portfolio optimization 
Source: Research findings 
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As shown in Figure 3, the NSGA-II Pareto optimal frontiers are very close 

to the exact Pareto optimal frontiers in the mean-historical VaR portfolio 

optimization problem. Thus, these results demonstrate the validity used by 

NSGA-II for the mean-historical VaR portfolio optimization problem. 

Then, the NSGA-II Pareto optimal frontiers of the mean-EGARCH (2, 2) 

VaR portfolio optimization are calculated based on the knapsack problem. 

Finally, the NSGA-II Pareto optimal frontiers of two models are compared with 

each other in Figure 4.  

 

 
 

 

Figure 4. NSGA-II Pareto optimal frontiers of the mean- historical VaR portfolio 

optimization and the mean-EGARCH (2,2) VaR portfolio optimization 
Source: Research findings 

 

 

0

0/15

0/3

0 0/5 1 1/5 2 2/5 3

E
x

p
ec

te
d

 r
et

u
rn

VaR

k=5

Mean-EGARCH(2,2) VaR Mean-historical VaR

0

0/15

0/3

0 0/5 1 1/5 2 2/5 3

E
x

p
ec

te
d

 r
et

u
rn

VaR

k=6

Mean-EGARCH(2,2) VaR Mean-historical VaR



  Vaezi et al., Iranian Journal of Economic Studies, 9(2) 2020, 569-594 589 
 

According to Figure 4, the VaR in the mean- EGARCH (2, 2) VaR portfolio 

optimization problem is less than the mean-historical VaR portfolio optimization 

problem at a constant level of the return. In other words, the Pareto optimal 

frontiers of the mean-EGARCH (2, 2) VaR portfolio selection model are superior 

to the Pareto optimal frontiers of the mean- nonparametric VaR portfolio 

optimization problem. In other words, the Pareto optimal frontiers of the mean- 

EGARCH (2, 2) VaR portfolio selection model are superior to the Pareto optimal 

frontiers of the mean- nonparametric VaR portfolio optimization problem.  

 

5. Conclusions  

In this paper, we have focused on the problem of Markowitz asset allocation 

that the cost of selecting a particular asset is relatively high, for example, 

Berkshire Hathaway Inc. Therefore, we have introduced a multi objective 

portfolio selection model based on the improved knapsack problem, taking into 

account the cardinality, quantity and budget constraints. The first objective 

function maximizes the expected return of the portfolio and the second objective 

function minimizes  the portfolio risk value (VaR) for risk assessment in the 

knapsack-based portfolio selection model. We have considered parametric 

(variance-covariance matrix) and nonparametric (historical) approaches to 

measure VaR. We have used the best of GARCH family models to estimate the 

conditional return fluctuations in the variance-covariance matrix, which is based 

on measuring and comparing different criteria in different types of GARCH 

family models.  

Finally, MOEA has been planned for the solution. To show the practical 

application of the proposed model, a real portfolio of the Iran stock market has 

been solved. 

By comparing the results of two sets of objective functions based on different 

approaches in risk measurement, a superior approach in risk assessment has been 

revealed for the knapsack- based portfolio selection model. 

Therefore, the results of two sets of objective functions have been calculated 

based on the different approaches in risk assessment. The GAMS Pareto optimal 

frontiers and the NSGA-II Pareto optimal frontiers of the mean-historical VaR 

portfolio optimization have been compared with each other. The NSGA-II Pareto 

optimal frontiers are very close to the exact Pareto optimal frontiers in the mean-

historical VaR portfolio optimization problem. Therefore, the results show that 

the validity of the applied NSGA-II for the mean-historical VaR portfolio 

optimization problem.  

Then, the NSGA-II Pareto optimal frontiers of the mean-EGARCH (2,2) 

VaR and mean historical-VaR portfolio optimization  have been compared with 

each other. 

As a result,, Pareto optimal frontiers of the mean-EGARCH (2, 2) VaR 

portfolio selection model were superior to the Pareto optimal frontiers of the 

mean- nonparametric VaR portfolio selection model. These results show the 
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importance of choosing the right method for measuring risk in portfolio 

optimization problems. 
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Appendix 
Appendix A. data. Related information can be found at 

https://u.pcloud.link/publink/show?code=XZ6PFMXZtNSfwgtbXepbYJkuwT7

NiySgbHGy 

https://u.pcloud.link/publink/show?code=XZ6PFMXZtNSfwgtbXepbYJkuwT7NiySgbHGy
https://u.pcloud.link/publink/show?code=XZ6PFMXZtNSfwgtbXepbYJkuwT7NiySgbHGy

