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The pertinent question is whether scarcity of non-renewable 

energy resources limits economic growth. Given that the earth's 

natural resources are limited; the answer appears to be yes. 
However, there are two reasons to reject this question. 

Technological advancements that conserved resources may be 

able to eliminate resource scarcity. Additionally, countries can 
import resources from other countries. This paper aims to develop 

an endogenous growth model with stochastic exhaustible energy 

resources and use it to explain the economy's steady state 
behavior. We consider the uncertainty associated with extractable 

energy resources and then develop a stochastic growth model on 
this basis. Additionally, we solve this model analytically using the 

Stochastic Hamilton-Jacobin-Bellman method (SHJB method). 

Finally, for the Iranian economy, we apply the analytical solution. 
The primary findings indicate that as natural resource extraction 

becomes even more uncertain, the rate of economic growth slows, 

which results in a subsequent decline in the rate of resource 
extraction. Furthermore, we observe that the variance in energy 

extraction in the Iranian economy is approximately 0.22. Under 

these conditions of uncertainty, the optimal economic growth rate 
in a steady state will be 7.1 percent with an extraction rate of 1.1 

percent. 
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1. Introduction 

Numerous studies have been conducted in an attempt to construct a theory 

of economic growth. The majority of these studies were conducted based on 

specific assumptions. However, it is clear that most resources, such as energy, are 

stochastic in some way. As a result, it is necessary to augment existing growth 

models with stochastic growth models to explain economic behavior better. 

Countries with more natural resources have a greater chance of achieving 

higher growth and improving household welfare, as they can use natural resources 

such as petroleum and natural gas to generate output and physical and human 

capital. Excessive resource use is impossible, at least in the long run, because the 

earth's natural resources are finite. Thus, it is easy to imagine that we will exhaust 

all of the country's non-renewable resources at a point in the future. Without the 

ability to use resources in production, economic growth will slow and eventually 

reach a standstill. This is the most heinous scenario imaginable.  

(Solow, 2009) demonstrated that resource depletion is a minor, if not non-

existent, concern. Taking note that if natural resources are exhausted, their prices 

must increase rather than decrease. Indeed, (Aguilera & Ripple, 2012) estimate 

that oil and gas are more abundant than previously believed, at least in Europe. 

Additionally, according to (Ostadzad & Hadian, 2017), the trend of extractable 

energy natural resources is increasing for the Iranian economy. 

There are two reasons for the suspension of natural resource scarcity. 

Specifically, (Dasgupta & Heal, 1974) argue that technological advancement has 

rendered previously necessary exhaustible resources obsolete. Second, countries 

can structure for the absence of any resources by importing them elsewhere  

(Weil, 2014). In reality, if a country with limited natural resources requires 

petroleum for manufacturing purposes, it can import it from countries with 

abundant energy resources. These two assessments do not make a strong case for 

the indefinite avoidance of finite natural resources. We will concentrate on Iran 

as a country endowed with abundant natural resources (Dasgupta & Heal, 1974). 

Technological progress that substitutes for resources may not occur, which is why 

Dasgupta uses a stochastic model with an indeterminate discovery. 

Several studies, including (Velenturf & Purnell, 2017), (Barbier, 2021), 

(Polasky et al., 2019), and (Couix, 2019) have discovered the implications of 

resource scarcity for economic growth. 

Optimistic economists believe that technological advances lead to 

discovering new reserves and could likely compensate for the increase in demand 

for non-renewable resources. In contrast, pessimistic economists believe that 

these effects are not sufficiently reliable (Hettich, 2000). The trend of oil and gas 

resources shows that pessimistic views are misleading. It can be agreed that, rather 

than depleting oil and gas reserves, these reserves have increased over the last 

decades (McGlade, 2014). 

(Cheviakov & Hartwick, 2009) expanded the Solow model by including 

exhaustible resources. The demonstration that the higher rate of physical capital 
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depreciation terminates the economy can be avoided by robust technological 

improvement. 

(Aghion, Blundell, Griffith, Howitt & Prantl, 2009) demonstrated that the 

creative destruction (or Schumpeterian) growth model could be maintained in the 

presence of exhaustible resources. 

Romer describes how technological progress would make it possible to 

sustain growth within the framework of neoclassical growth models, despite the 

presence of resource depletion and land scarcity (Jones, 2019). 

None of the prior studies examined the uncertainty inherent in resource 

dynamics. However, it is acknowledged that resource dynamics are stochastic in 

nature. 

In continuation of  (Dai, Kou & Qin, 2019), we present a stochastic model 

in which a geometric Brownian motion stochastic process drives resource 

dynamics. Additionally, we take into account zero degrees of openness. This 

supposition enables the analytical solution to be deduced. In contrast to (Smith, 

2007), which only solves a few of this class of stochastic growth models in closed 

form, we solve the model analytically, resulting in clear and transparent 

expressions that can be used to answer the research questions. Then we use those 

to investigate how increased uncertainty affects economic growth and agent 

welfare. The findings indicate that increased uncertainty reduces economic 

growth and welfare. 

To summarize, this paper will use analytical techniques to examine the 

implications of natural resource scarcity and associated uncertainty for growth 

and welfare. The following is the organization of the paper. Sections 2 and 3 

establish the context for the literature review, while the model defines and 

discusses the model's implications. Sections 5 and 6 contain solutions and 

concluding remarks. 

 

2. Literature Review 

This section summarizes research on the stochastic growth model. 

Additionally, the growth model based on natural resources was deliberate. (Tilton, 

1996) examined both optimistic and pessimistic perspectives on long-term 

economic growth in light of resource depletion, uncertainty, and technological 

development in his study. (Pasqual & Souto, 2003) examined the issue of long-

term economic growth in light of resource uncertainty. They established that 

intergenerational resource distribution ensures sustained economic growth. 

Also (Papyrakis & Gerlagh, 2004) addressed the long-term economic growth 

trajectory concerning the limitations of intergenerational and non-renewable 

sources with certainty. They demonstrated that economic convergence is 

dependent on the stock of primary sources. 

(Martinet & Doyen, 2007) used optimal control to analyze long-term 

economic growth in the presence of non-renewable resources, technology, and a 

lack of other uncertainties in their article. Another study examined the potential 
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for long-term economic growth in light of non-renewable resource depletion, 

endogenous extraction rates, and a dynamic population (da Silva, 2008). 

(Schilling & Chiang, 2011) a theoretical article examined optimism and 

pessimism regarding long-term economic growth, considering externalities, 

resource depletion uncertainties, technological advancement, and resource 

substitution. 

(Mitra & Roy, 2017b) define a new set of conditions for a policy function 

that satisfies the Ramsey–Euler equation to be optimal in a single sector stochastic 

optimal growth model. This paper concludes that an interior Ramsey–Euler policy 

function is optimal if it is continuous or if both consumption and investment are 

non-decreasing in output. Under these conditions, the policy's stochastic paths 

must satisfy the transversality constraint. Applying this study implies that future 

research will not need to verify the transversality condition when determining the 

optimality of a policy function. 

(Mitra & Roy, 2017a), a condition for output and consumption to be strictly 

positive with probability one, in the long run, was derived in a general model of 

stochastic optimal economic growth. The condition establishes that output in the 

distribution has converged to a unique positive stochastic steady state. This study 

condition explicitly involves a near-zero level of relative risk aversion and is 

weaker than existing literature conditions. (Mitra & Roy, 2017a) analyzes 

productivity and relative risk aversion in a framework where productivity and 

relative risk aversion are constrained, and productivity shocks are, i.i.d. in time. 

Additionally, it demonstrated the tightness of the condition for the family of 

constant relative risk aversion (CRRA) utility functions, in which a strict violation 

of their condition implies almost certain global convergence to zero. For this 

family of utility functions, output and consumption may almost certainly 

converge to zero when risk aversion at zero is near 1. Convergence to a positive 

steady state is ensured when risk aversion is either sufficiently small or 

sufficiently large. It is neither necessary nor sufficient for global convergence to 

a positive steady state if expected productivity at zero is greater than the discount 

rate. 

(Rubini & Moro, 2019) propose a controllable algorithm for solving 

structural change stochastic growth models. Structural change, in general, 

indicates an unbalanced growth path. When uncertainty is introduced, this 

property precludes using local solution techniques and necessitates using global 

methods. The algorithm was applied to a stochastic version of a three-sector 

structural transformation growth model with Stone-Geary preferences using the 

Parameterized Expectations Approximation. The calibrated explanation was used 

to demonstrate a tight connection between the economy's long- and short-run 

properties in this class of models. This tension arises from the non-homothetic 

components of the various forms of consumption required to accommodate long-

run structural change. However, it implies high volatility of services and low 

volatility of manufacturing and agriculture in the short run. 



  Hadiyan et al., Iranian Journal of Economic Studies, 10(1) 2021, 31-55 35 
 

The following question is posed in (Tsuboi, 2019): "Will natural resource 

scarcity constrain economic growth?" Two scenarios were developed to address 

this question "initially, resource-conserving technological progress has the 

potential to eliminate resource scarcity. Second, countries may import resources 

from other countries "'. 

Further details can be found in the literature by (Talari, Shafie-Khah, Osório, 

Aghaei & Catalão, 2018), (De La Fuente-Mella, Vallina-Hernandez & Fuentes-

Solís, 2019), (Tsuboi, 2019), (Di Somma, Graditi, Heydarian-Forushani, Shafie-

Khah & Siano, 2018). 

Although several studies examined the effects of non-renewable primary 

energy resources on economic growth as non-random, the stochastic growth 

model does not consider the effect of extractable random energy resources on 

economic growth. The random level for extractable resources is considered in this 

study, and a stochastic growth model is developed. We solve our model using the 

analytic method (Stochastic Hamilton Jacobin Bellman Method). Then, we 

calibrate the solved model for the Iranian economy to analyze the economy's 

steady state behavior. 

 

3. The Model 

The model presented in this article is a modified version of Ramsey's classic 

growth model. We assume that energy is a stochastic variable that plays a 

significant role in the production sector. Imposing this component on the Ramsey 

traditional growth model justifies an economy's steady state behavior. 

The study makes the assumption of a closed economy with three sectors. The 

model's fundamental premise is that there will be no government and that the 

government will serve solely as a social planner. 

The following sections survey economic sectors (households, businesses, 

and the energy sector). In the next section, a model for Iran's economy is 

developed that accounts for the country's fluctuating energy resources. 

 

3.1 Households 

This model's economy is composed of a large number of identical 

households that can exist indefinitely. Through the following welfare function, 

each household attempts to maximize its total utility. 

𝑊(. ) = 𝑀𝑎𝑥 ∫ 𝑢(𝑐)𝑒−𝜌𝑡𝑑𝑡
∞

0
                                (1) 

Where 𝑢(𝑐) is the instantaneous utility function and 𝑢𝑐 =
𝑑𝑢

𝑑𝑐
> 0. According 

to (Besov, 2014) (Chakravarty & Manne, 1968) and  (Aseev & Kryazhimskii, 

2007) the functional form of instantaneous utility is given in equation (2). 

𝑈(𝐶𝑡) =
𝐶1−𝜍

1−𝜍
                                  (2)       

1

𝜍
> 0 Shows private consumption’s intertemporal elasticity of substitution 

between two consecutive points of time. Also 𝜌 > 0 is discount rate. 

Furthermore, the household's budget constraint is,  
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𝑑𝐾 = (𝑌𝑡 − 𝐶𝑡 − 𝛿𝐾)𝑑𝑡 ⇒ 𝐾̇ = 𝑌𝑡 − 𝐶𝑡 − 𝛿𝐾                              (3) 

𝐾̇and𝐾 represent investment and capital stock, respectively, 𝛿is the 

depreciation rate of capital stock and 𝐶𝑡 is private-sector consumption. 

Households attempt to maximize equation (1) according to budget constraints 

(eq.3). The following sections discuss the sectors of firms. 

 

3.2 Firms 

Numerous similar firms produce a variety of different goods. The firms in 

this study are classified into two categories: those producing finished goods and 

those that produce energy. Each firm generates output through the use of capital 

and labor. 

Inputs used by finished goods producers are capital, energy, and labor. The 

production function has been assumed according to a Cobb-Douglas form in 

equation (4) (Cheng & Han, 2014), (Matsumoto & Szidarovszky, 2021). 

𝑌𝑡 = 𝐴(𝜂𝐾𝑡)
𝛼(𝜃𝐻𝑡)

𝛽(𝐸𝑡)
𝜒                                (4) 

In equation (4) 𝜂 is the percentage of the capital used in the production of 

finished goods and 1 − 𝜂 is the percent of capital in the energy sector. Also 𝜃 is 

the percentage of labor used to produce finished goods and 1 − 𝜃 is the percent 

for energy. 

Where 𝐸, 𝛼, 𝜒, 𝛽, 𝜂, 𝜃 is energy consumption in the finished goods sector, the 

elasticity of production concerning capital, the elasticity of production concerning 

energy consumption, the elasticity of production concerning labor, the share of 

capital in the finished goods sector, and the labor share in the finished goods 

sector, respectively. 

Also, we assume energy production is given by equation (5). It is assumed 

that in the energy  production sector, three inputs have been used (capital, labor, 

and primary energy (𝑟𝑅𝑡)). 
𝐸𝑡 = 𝐵[(1 − 𝜂)𝐾𝑡]

𝛾[(1 − 𝜃)𝐻𝑡]
𝜆[𝑟𝑅𝑡]

𝜅                               (5) 

Where 𝛾, 𝜅, 𝜆, 1 − 𝜂, 1 − 𝜃 is the elasticity of energy production concerning 

capital, the elasticity of energy production concerning extracted resources, the 

elasticity of energy production concerning labor, the share of capital in the energy 

generation sector, and the share of the labor force in the energy generation sector, 

respectively. 

In relation (5), 𝑟𝑅𝑡is the extraction of primary energy resources and is 

assumed to be the final energy used in producing the finished goods. Therefore, 

𝑟is the extraction rate of oil and gas. Since the level of resources is limited and 

changes with extraction, the equation of motion is surveyed for extractable energy 

resources. 

 

3.3 The Equation of Motion for Extractable Energy Resources 

Pindayk (1980) classifies exploration activities into two categories. First, the 

discovery of new information about the distribution of reserves, mainly when this 

distribution is unknown. In this instance, exploration functions similarly to a 

Bayesian Learning Process (Clark & Mangel, 1986). Second, exploring new areas 
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will discover new reserves, allowing for expanding available resources. As a 

result, each exploration of existing reserves may increase rather than decrease, 

according to a random process. This is especially true if we conduct a long-term 

analysis of the data to apply macroeconomic models. 

Similar to Reed (1979) we introduce a natural growth rule as a function of 

resource in discrete-time, 

𝑄𝑡+1 = 𝑍𝑡 × 𝑅(𝑄𝑡)                                 (6) 

Where 𝑅(. ) is a reproduction of expected resources and 𝑍𝑡is defined as the 

average of all random variables that are distributed independently and identically 

and also exhibit random shocks. These random shocks can affect the growth of 

the resource stock and the expected level of resources in each period. The level of 

resources becomes evident after realization𝑍𝑡.  
However, the future evolution of stock processes cannot be predicted. In 

general, the concept of a steady state should be replaced by the concept of steady 

state distribution in this class of stochastic models. However, if the random shock 

realizations are observed before making extraction decisions, the optimal policy 

maintains a constant escapement, i.e., the optimal escapement distribution 

degenerates to a constant (Reed, 1979). When additional sources of uncertainty 

are introduced (e.g., errors in the measurement of current stocks), the constant 

escapement rule breaks down. (Leizarowitz & Tsur, 2012) used Ito's stochastic 

calculus to formulate the resource management problem in continuous time with 

stochastic stock evolution. The stock's evolution is determined by a diffusion 

process that follows the stochastic differential equation (Eq. 7). 

𝑑𝑄 = [𝑅(𝑄) − 𝑞]𝑑𝑡 + 𝜎(𝑄)𝑑𝑧                                (7) 

Where in this equation, Z is a standard Wiener process and 𝜎2(. ) is the 

corresponding variance. Specifying𝜎(𝑄) = 𝜎𝑄, with a 𝜎 constant, gives rise to a 

geometric Brownian motion and greatly facilitates the analysis. By using the 

expected cumulative net benefit as the optimization objective, stochastic dynamic 

programming can derive the optimal extraction rule and associated steady state 

distribution. Again, the prudence implications of this type of uncertainty are 

ambiguous and dependent on the recharge and benefits functions' properties. See 

(Kitabatake, 1989) and (Figuières & Tidball, 2012) for examples in which the 

optimal exploitation rule 𝑞(𝑄) increases, remain unchanged, or decreases as the 

variance parameter 𝜎 increases. Other examples of resource management under 

stochastic stock dynamics include (Plourde & Yeung, 1989), (Knapp & Olson, 

1995), (Wirl, 2006a), and (Wirl, 2006b). 

In this study, changes in the level of extractable energy resources (𝑑𝑅) is 

considered in equation (8). It has two components, random section (𝑅𝑡𝜎𝑅𝑑𝑧) and 

non-random component (−𝑟𝑅𝑡𝑑𝑡). 
𝑑𝑅 = −𝑟𝑅𝑡𝑑𝑡 + 𝑅𝑡𝜎𝑅𝑑𝑧                                 (8) 

The augmented Ramsey growth model with stochastic resources (oil and gas 

primary resources) has been investigated. Thus, concerning sections 2.1-2.3, the 
following section summarizes the problem (which a social planner must resolve). 
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3.4 Augmented Stochastic Growth Model 

Assume a benevolent social planner selects consumption choices over time, 

intending to maximize the representative individual's welfare. Given that 

individuals are identical, we assume that the social planner assigns each agent the 

same level of consumption. Consequently, the instantaneous utility of each 

individual is given by𝑈(𝐶𝑡) =
𝐶1−𝜍

1−𝜍
. The social planner's optimization problem is 

then to choose c (t) to maximize 𝑈(. ) = 𝑀𝑎𝑥𝐸 ∫ 𝑢(𝑐)𝑒−𝜌𝑡𝑑𝑡
∞

0
, subject to the 

economy's resource constraint (equations 3 and 8), and the initial condition k (0) 

= k0. Thus, the stochastic optimization problem that social planners face can be 

depicted as follows: 

𝑊(. ) = 𝑀𝑎𝑥𝐸 (∫ (
𝐶𝑡
1−𝜍

1 − 𝜍
)𝑒−𝜌𝑡𝑑𝑡

∞

0

) 

𝑠. 𝑡 
𝑑𝐾 = (𝐴(𝜂𝐾𝑡)

𝛼(𝜃𝐻𝑡)
𝛽(𝐸𝑡)

𝜒 − 𝐶𝑡 − 𝛿𝐾𝑡)𝑑𝑡 

𝑑𝑅 = −𝑟𝑅𝑡𝑑𝑡 + 𝑅𝑡𝜎𝑅𝑑𝑧 
𝑑𝐻 = 𝑛𝐻𝑡𝑑𝑡 
𝐸𝑡 = 𝐵[(1 − 𝜂)𝐾𝑡]

𝛾[(1 − 𝜃)𝐻𝑡]
𝜆[𝑟𝑅𝑡]

𝜅                               (9) 

Because the social planner must solve an optimal control problem (problem 

9), we have included an explanation of the stochastic optimal control 

mathematical model in the following section. Following that, stochastic 

optimization (problem 9) is solved analytically with reference to the standard 

Mathematical stochastic optimal control model. 

 

4. Methodology (Mathematical Model of the Stochastic Optimal Control 

Problem) 

Optimal control is a mathematical branch of the control theory used in many 

economics fields, such as growth models and financial models. It aims to discover 

a control law for a controlled stochastic or ordinary dynamical system while 

minimizing or maximizing some utility function. 

Deterministic optimal control has been linked to industrial applications since 

its beginning in the 1950s, starting with aerospace (problem of an optimal 

trajectory of an airplane). Stochastic optimal control appeared later on in the 70s 

in the financial sector. (Merton, 1975) studied the stock portfolio optimization. 

(Black & Scholes, 2019) presented the notion of a financial model. The optimal 

control problems developed by Bellman and optimal control problems can be 

solved by the dynamic programming method. 

Bellman states that the value function associated with the optimal control 

problem satisfies particular equality called a dynamic programming principle 

(DPP). (Bellman, 1952; Bellman & Kalaba, 1965; Bellman, 1962). Classical 

control theory evolved into the new era of modern control theory, emphasizing 
the importance of controllers having an optimality property. The development of 
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Pontryagin's maximum principle and Bellman's dynamic programming initiated 

this new discipline in the late 1950s and early 1960s (Derakhshan, 2015). 

The purpose of the remainder of this section is to provide a mathematical 

model for stochastic control problems. Indeed, we propose to use mathematics to 

explain a stochastic control problem, and we coin the term Stochastic Controlled 

Dynamics1. 

Any stochastic control dynamic problem in economics has two segments. 

1- Stochastic Controlled Dynamics equation 

2- Payoff, in that the growth model payoff optimization equals welfare 

optimization. 

First, explained the Stochastic Controlled Dynamics equations are explained. 

Assuming that 𝑓depends upon some "control" so that 𝑓: 𝑅𝑛 × 𝐴 → 𝑅𝑛where𝐴 ⊆
𝑅𝑚. We call a function 𝑎: [𝑡1, 𝑇] → 𝐴 control, where t1 and T are initial and 

terminal time, respectively. Concerning each control function, we deliberate 

System Dynamic Equation (SDE) 

{
𝑑𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑎(𝑡))𝑑𝑡 + 𝜎𝑑𝐵𝑡𝑡1 ≤ 𝑡 ≤ 𝑇
𝑥(𝑡1) = 𝑥1

                (10) 

Where 𝐵𝑡 is Brownian motion, and 𝜎 is volatility. We denote the trajectory 

x(.) as the corresponding response of the system to control a(.). We also assume 

a(.) is measurable and note the collection of all acceptable controls, where 𝑎(𝑡) =
{𝑎1(𝑡), 𝑎2(𝑡), . . . , 𝑎𝑚(𝑡)} 

The task will be to determine the "best" control for the system. So, we must 

describe a standard payoff (or welfare in the growth model). Finally, the payoff is 

defined as functional, and because the system is stochastic, it is defined as 

expectation, so 

𝑊(𝑎(. )) = 𝑚𝑎𝑥 𝐸 (∫ 𝑢(𝑥(𝑡), 𝑎(𝑡))𝑑𝑡 + 𝑔(𝑥(𝑇))
𝑇

𝑡1
)               (11) 

Where x(.) satisfies SDE (10) for the control a(.). 

Here 𝑢: 𝑅𝑛 × 𝐴 → 𝑅and 𝑔:𝑅𝑛 → 𝑅are given, and we call u the running 

payoff (instantaneous utility) and g the terminal payoff (terminal utility). The 

terminal time T > 0 is given. In welfare function (11) with regards to SDE (10), 

The primary purpose is to find a control a∗(.), which maximizes the welfare. In 

other words, we want to achieve𝑊(𝑎∗(. )) > 𝑊(𝑎(. )), for all controls a(.) ∈ A. 

Such a control a∗ (.) is called optimal control. 

Specific problems in mathematics are difficult or impossible to solve 

directly. The novel approach is to reclassify the problem as part of a larger family 

of similar problems through revision. The Hamilton-Jacobi-Bellman equation is 

the primary tool we use in dynamic programming algorithms. 

Assuming that the value function V is a function of variables (x,s), 𝑥 ∈ 𝑅𝑛, 

0 ≤ s ≤ T. Then V solves the following semilinear parabolic PDE 

 
1 It should be declared that this would not be a complete explanation; because we do not need to enter the 

complicated deliberations of mathematical analysis. We only provide a simple definition which satisfies 

our purposes in this paper. 
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𝜕𝑉(𝑥,𝑠)

𝜕𝑠
+
1

2
𝜎2𝛥𝑉(𝑥, 𝑠) + 𝑚𝑎𝑥

𝑎∈𝐴
{𝑓(𝑥, 𝑎). 𝛻𝑥𝑉(𝑥, 𝑠) + 𝑢(𝑥, 𝑎)} = 0              (12) 

Where 𝛻𝑥𝑉(𝑥, 𝑠) = (
𝜕𝑉(𝑥,𝑠)

𝜕𝑥1
,
𝜕𝑉(𝑥,𝑠)

𝜕𝑥2
, . . . ,

𝜕𝑉(𝑥,𝑠)

𝜕𝑥𝑛
) is the gradient in terms of x. 

The PDE (12) is the stochastic Hamilton-Jacobi-Bellman (HJB) equation. 

The PDE could solve as analytical or numerical. In this paper, we solve the 

stochastic Hamilton-Jacobi-Bellman (HJB) equation by the analytical method. 

Solving the SHJB equation has been considered in numerous studies, including 

(Kolokoltsov, 1996), (Kosygina, Rezakhanlou & Varadhan, 2006), (Bayraktar & 

Sirbu, 2013), (Qiu, 2018), (Wu & Yu, 2008) and (Fuhrman, Masiero & Tessitore, 

2010). 

The following section will discuss how to solve the optimal control problem 

(9) concerning PDEs (12). 

 

5. Model Solving and Analyzing 

In the preceding section, we discussed models with a limited time horizon 

and optimal control. However, the time horizon of the augmented stochastic 

model used in this study is unbounded. To convert a stochastic dynamic model 

with a finite time horizon to an infinite time horizon, see (Aliyu, 2018), (Krener, 

2019) and (Satoh, Kappen & Saeki, 2016). 

Concerning section 3, the model has three equations of motion (equation of 

motion for capital (K), labor (H), and stochastic extractable energy resources (R)). 

Therefore, the state variables are K, R, and H. The state variables vector is defined 

in section 3 by x vector. So𝑥⃗(𝑡) = [𝐾𝑡, 𝑅𝑡 , 𝐻𝑡]. 
Control variables are consumption (𝐶𝑡), the rate of energy resources 

extraction (𝑟), the percentage of the labor force in the finished goods-producing 

sector (𝜃), and the percentage of capital in the finished goods-producing sector 

(𝜂). Hence, reference to the control variable defined in section 3, the vector of 

control variables is𝑎⃗(𝑡) = [𝐶𝑡, 𝑟, 𝜃, 𝜂].  
This section solves the stochastic intertemporal utility optimization problem 

using capital, labor, and random extractable resources through motion equations 

(eq. 13). 

𝑊(. ) = 𝑀𝑎𝑥𝐸 (∫ (
𝐶𝑡
1−𝜍

1 − 𝜍
)𝑒−𝜌𝑡𝑑𝑡

∞

0

) 

𝑠. 𝑡 

𝑑𝐾 = (𝐴𝐵𝜒𝑟𝜅𝜒𝜂𝛼(1 − 𝜂)𝛾𝜒𝜃𝛽(1 − 𝜃)𝜆𝜒𝐾𝑡
𝛼+𝛾𝜒𝐻𝑡

𝛽+𝜆𝜒𝑅𝑡
𝜅𝜒 − 𝐶𝑡 − 𝛿𝐾𝑡)𝑑𝑡 

𝑑𝑅 = −𝑟𝑅𝑡𝑑𝑡 + 𝑅𝑡𝜎𝑅𝑑𝑧 
𝑑𝐻 = 𝑛𝐻𝑡𝑑𝑡                               (13)2 

For this purpose, we use the stochastic Jacobins Hamilton, Bellman equation 

(SHJB) as follows concerning control variables (𝑎⃗(𝑡) = [𝐶𝑡, 𝑟, 𝜃, 𝜂]) and state 

variables (𝑥⃗(𝑡) = [𝐾𝑡 , 𝑅𝑡 , 𝐻𝑡]) vectors. 

 
2  In optimal control problem (eq.9), energy production function have replaced in capital equation of motion. 
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tR

𝜌𝑉(𝑥⃗) = 𝑚𝑎𝑥
𝑎⃗⃗
{𝑢(𝑥⃗, 𝑎⃗) + 𝑓(𝑥⃗, 𝑎⃗). 𝛻𝑥𝑉(𝑥) +

1

2
𝑡𝑟(𝛥𝑉(𝑥) × 𝜎2)}            (14)3 

In equation (14),  and are the gradient vector and the Hessian 

matrix of V, respectively. 𝑓(𝑥⃗, 𝑎⃗) and  are a deterministic and random 

component of equations of motions. The equations of motion in (13) has been 

denoted in a vector format (eq.15) (for simplicity, we replaced𝑌𝑡 =

𝐴𝐵𝜒𝑟𝜅𝜒𝜂𝛼(1 − 𝜂)𝛾𝜒𝜃𝛽(1 − 𝜃)𝜆𝜒𝐾𝑡
𝛼+𝛾𝜒𝐻𝑡

𝛽+𝜆𝜒𝑅𝑡
𝜅𝜒 in (9)) 

[

𝑑𝐾𝑡
𝑑𝑅𝑡
𝑑𝐻𝑡

] = [

𝑌𝑡 − 𝐶𝑡 − 𝛿𝐾𝑡
−𝑟𝑅𝑡
𝑛𝐻𝑡

]𝑑𝑡 + [
0
𝑅𝑡𝜎𝑅
0

]𝑑𝐵𝑡                (15) 

Thus, according to the standard format (eq.10), 𝑓(𝑥⃗, 𝑎⃗)  and 𝜎⃗ can be defined 

as follows. 

𝑓(𝑥⃗, 𝑎⃗) = [

𝑌𝑡 − 𝐶𝑡 − 𝛿𝐾𝑡
−𝑟𝑅𝑡
𝑛𝐻𝑡

] , 𝜎⃗ = [
0
𝑅𝑡𝜎𝑅
0

]                 (16) 

Also, gradient vector and the Hessian matrix of 𝑉(𝑥, 𝑠) are  𝛻⃗⃗𝑥𝑉(𝑥, 𝑠) =

(
𝜕𝑉(𝑥)

𝜕𝐾
,
𝜕𝑉(𝑥)

𝜕𝑅
,
𝜕𝑉(𝑥)

𝜕𝐻
) = [𝑉𝐾 𝑉𝑅 𝑉𝐻] and  𝛥𝑉(𝑥, 𝑠) = [

𝑉𝐾𝐾 𝑉𝐾𝑅 𝑉𝐾𝐻
𝑉𝑅𝐾 𝑉𝑅𝑅 𝑉𝑅𝐻
𝑉𝐻𝐾 𝑉𝐻𝑅 𝑉𝐻𝐻

], 

respectively. In the gradient vector and the Hessian matrix,  is the first 

derivative of , and  is the second derivative of V, where the set of and 

are a set of state variables (                                 ). 

The covariance matrix of the random component of equations is a motion 

given by. Concerning the modeling section in this study, we considered only the 

energy resources to be a random variable, hence in a variance-covariance matrix, 

the only variance of extractable resources (    ) is non-zero. All other components 

of this matrix must be zero. 

Trace of multiplication of the Hessian matrix of V and variance-covariance 

matrix has to be equal to. 

Also, the multiplication of the gradient vector of V and non-random 

component vector is shown in equations (9a). 

 
3  Reference to (Achdou, Han, Lasry, Lions, & Moll, 2014), (Achdou, Buera, Lasry, Lions, & Moll, 2014) 

and (Nuño & Moll, 2018) SHJB defined in eq.12 can be written in this format. 

V V



XV

V XYV X

Y

  ( )
22

0 0 00

0 0 0 0

0 0 0 0

t R t R t RR R R    

  
  = = =   
     

 , ,X Y K R H= =

( ) ( )
221 1

2 2
RR t Rtr V V R   =
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𝑓(𝑥⃗, 𝑎⃗). 𝛻𝑥𝑉(𝑥) = (𝑌𝑡 − 𝐶𝑡 − 𝛿𝐾𝑡)𝑉𝐾 −−𝑟𝑅𝑡𝑉𝑅 + 𝑛𝐻𝑡𝑉𝐻               (17) 

Concerning calculating all components of SHJB equation (14), we have: 

               (18) 

In equation (18), the derivative of SHJB relative to control variables should 

be zero. This means that (                                                                             ). First-  

 

order conditions (FOC) results are shown in (19). 

{

𝜕𝜌𝑉(𝑥)

𝜕𝐶𝑡
= 0

 𝑒𝑞.(18) 
→        𝑢′(𝐶𝑡) = 𝑉𝐾

𝜕𝜌𝑉(𝑥)

𝜕𝑟
= 0

 𝑒𝑞.(18) 
→        𝑉𝐾

𝜕𝑌𝑡

𝜕𝑟
= 𝑉𝑅𝑅

𝜕𝜌𝑉(𝑥)

𝜕𝜂
= 0

 𝑒𝑞.(18) 
→        

𝜕𝑌𝑡

𝜕𝜂
= 0

𝜕𝜌𝑉(𝑥)

𝜕𝜃
= 0

 𝑒𝑞.(18) 
→        

𝜕𝑌𝑡

𝜕𝜃
= 0

              (19) 

From (19), the optimal share of capital (𝜂∗) and labor (𝜃∗) in the finished 

goods production sector are: 

𝜂∗ =
𝛼

𝛼+𝜒𝛾
𝜃∗ =

𝛽

𝛽+𝜆𝜒
                   (20) 

These equations confirm that, if the elasticity of inputs in the production of 

finished goods (elasticity of production relative to capital (𝛼) and labor (𝛽)) 

increase, the share of these factors in the production of finished goods will also 

increase (this means that increasing the efficiency of each production factor will 

increase the optimal share of that input in the finished goods production sector). 

Furthermore, regarding (20), if the elasticity of finished goods production relative 

to energy consumption increases (𝜒 ↑), the optimum share of capital and labor in 

the production of the finished goods must decrease (𝜂∗ ↓, 𝜃∗ ↓). This means that 

if the efficiency of final energy use in finished goods production increases, the 

share of labor and capital in the energy sector must also 

increase(1 − 𝜂∗) ↑, (1 − 𝜃∗) ↑. 
According to (Rathnayaka, Jianguo & Seneviratna, 2014), (Steele, 2012), 

(Cohen & Elliott, 2015), (Wang & Li, 2020), and (Brémaud, 2020), a vector form 

of Ito's Lemma for the finished goods production function is: 

𝑑𝑌𝑡(𝑥⃗, 𝑎⃗) = [𝛻𝑥⃗⃗ ⃗⃗ 𝑌𝑡. 𝑓 +
1

2
𝑡𝑟(𝛥𝑥𝑌𝑡. 𝜎⃗)] 𝑑𝑡 + [𝛻𝑥⃗⃗ ⃗⃗ 𝑌𝑡. 𝜎⃗]𝑑𝐵𝑡               (21) 

Components of relation (21) must be calculated to determine the economic 

growth rate in a steady state. In this equation𝛻𝑥⃗⃗ ⃗⃗ 𝑌𝑡 𝛥𝑥𝑌𝑡 are the gradient  vectors of 

the production function and the Hessian matrix relative to the state variables. We 

will have a random differential equation of production (eq. 22) with the first and 

second partial derivative of the function and replacement of the production of 

finished goods (21). 

𝑑𝑌𝑡 = [𝑌𝐾(𝑌𝑡 − 𝐶𝑡 − 𝛿𝐾𝑡) + 𝑌𝑅(−𝑟𝑅𝑡) + 𝑌𝐻(𝑛𝐻𝑡) +
1

2
𝑌𝑅𝑅(𝑅𝑡𝜎𝑅)

2] 𝑑𝑡 +

[𝑌𝑅𝑅𝑡𝜎𝑅]𝑑𝐵𝑡                                (22) 

In (22) 𝑌𝐾 , 𝑌𝑅 , 𝑌𝐻are partial derivatives of the production of the finished 

goods relative to capital, natural resources, and labor, respectively (𝑌𝐾 =

( ) ( ) ( ) ( ) ( )
2

, , ,

1

2
t K t t t R t H t RR t R

C r
V Max u C V Y C K V rR V nH V R

 
  = + − − + − + +

( ) ( ) ( ) ( )
0 , 0 , 0 , 0

d V d V d V d V

dC dr d d

   

 
= = = =
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𝜕𝑌𝑡

𝜕𝐾𝑡
, 𝑌𝑅 =

𝜕𝑌𝑡

𝜕𝑅𝑡
, 𝑌𝐻 =

𝜕𝑌𝑡

𝜕𝐻𝑡
). Also 𝑌𝑅𝑅is the second derivative of output in regards to 

natural energy resources (𝑌𝑅𝑅 =
𝜕2𝑌

𝜕𝑅2
= 𝜒𝜅(𝜒𝜅 − 1)

𝑌𝑡

𝑅𝑡
2). 

With regards to equations of motion of the capital and level of extractable 

energy resources (                                ,                                          ) and dividing 

(22) to differential of time ( ), equation (22) can be simplified as: 

 
𝑑𝑌𝑡

𝑑𝑡
= 𝑌𝐾𝐾̇𝑡 + 𝑌𝐻(𝑛𝐻𝑡) +

1

2
𝑌𝑅𝑅(𝑅𝑡𝜎𝑅)

2 + 𝑌𝑅
𝑑𝑅𝑡

𝑑𝑡
                (23) 

Replacing the production function derivatives in equation (23) and dividing 

this equation to (𝑌𝑡): 
1

𝑌𝑡

𝑑𝑌𝑡

𝑑𝑡
= (𝛼 + 𝜒𝛾)

𝐾̇𝑡

𝐾𝑡
+ (𝛽 + 𝜒𝜆)𝑛 +

1

2
𝜒𝜅(𝜒𝜅 − 1)𝜎𝑅

2 + 𝜒𝜅
1

𝑅𝑡

𝑑𝑅𝑡

𝑑𝑡
              (24) 

Economy growth rate (                  ), the growth rate of capital (                   )   

 

, and the growth rate of extractable resources (                 ) were assumed and placed 

in (24). The economic growth rate is calculated concerning capital growth rate 

and the level of extractable resources. 

              (25) 

Although this equation for economic growth is insufficient for calibration, 

we can conduct some theoretical analysis. By analyzing this equation: 

a) Increasing population growth rate (𝑛 ↑) will increase economic growth 

rate (𝑔𝑦 ↑). 

b) Improvement in input factor's (labor, energy, and capital) efficiency 
(𝛼, 𝛽, 𝜒) ↑ increases the growth rate of the economy (𝑔𝑦 ↑), as a result. 

Regarding (19) and the derivate of the utility function (                          ) will 

result in                 . This relation shows that the marginal utility of consumption 

equal to the marginal value of capital.  

Regarding (19) (𝑉𝐾
𝜕𝑌𝑡

𝜕𝑟
= 𝑉𝑅𝑅), simultaneous utility function (                       ) 

and some simplification will give:𝜌𝛷𝐾𝑡
1−𝛼−𝜒𝛾 =

𝐶𝑡
1−𝜍

1−𝜍
. This relation shows the 

consumption function based on the capital. In terms of this relationship, countries 

with more capital consume more. On the other hand, investing now will result in 

future capital growth. Increased consumption in the future will result from 

increased capital. 

By calculating the logarithm and then the differential of this relationship, the 

growth rate of capital can be calculated as (    ) based on the growth rate of 

consumption (     ) (𝑔𝑐 =
1−𝛼−𝜒𝛾

1−𝜍
𝑔𝐾). Therefore, the consumption growth rate can 

be equal, equal, or less than the capital growth rate. Also, by solving equation 

systems (19), the growth rate of extractable energy resources can be calculated 

using eq. (26) 

dt

( ) ( ) ( ) ( )21
1

2
y R k Rg n g g       = + + − + + +

t tK Y C K= − −
t t RdR rR dt R dz= − +

1
y

dY
g

Y dt
=

1
k

K dK
g

K K dt
= =

1
R

dR
g

dt R
=

( ) ( )
1

1
t t

C dU
U C U C C

dC






−
−=  = =

−
( )

( )(36)
(11) t

dU
Eq U C C

Eq dC
t K KU C V C V




− = =

−⎯⎯⎯→ = ⎯⎯⎯⎯⎯⎯⎯⎯→ =

( )
1

1
t

C
u C





−

=
−

Kg

cg
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                 (26) 

Relation (26) shows the growth rate of extractable resources (𝑔𝑅) in a steady 

state based on the extract variance (      ) and a fixed rate of extraction (   ).  

We assume that the level of extractable resource growth rate fluctuations to 

be neutralized in a steady state. So𝑑𝑅 = −𝑟𝑅𝑡𝑑𝑡 + 𝑅𝑡𝜎𝑅𝑑𝑧
 𝑑𝑧=0 
→      

1

𝑅𝑡

𝑑𝑅

𝑑𝑡
= 𝑔𝑅 =

−𝑟. Placement of this result in equation (26) and the optimum extraction rate 

(non-random part of the equation of motion of extractable resource) will be 

calculated as the elimination of fluctuation in a steady state. 

                  (27) 

According to equation (27) energy resources extraction rate will increase 

(𝑟∗ ↑) when volatility increases (𝜎2 ↑) because (1 − 𝜒𝜅) is positive. This increase 

is because when consumer uncertainty increases, they prefer to extract now rather 

than later. 

In addition, by increasing the rate of time preference (𝜌 ↑), the extraction rate 

of resources will decrease (c). The confidence in the future has increased with the 

preference rates increase. As a result, it is preferable to extract the resources in 

the future. 

On the other hand, regarding (25) and the assumption that in the steady state, 

the growth rate of consumption and finished goods production is considered equal 

(𝑔𝑐 = 𝑔𝑦 = 𝑔
∗). Therefore: 𝑔∗ = [𝜌 + (2 − 𝜒𝜅)𝑟∗ + (𝛽 + 𝜒𝜆)𝑛 − 𝜒𝜅(1 −

𝜒𝜅)𝜎𝑅
2] [

(1−𝛼−𝜒𝛾)

1−(𝛼+𝜒𝛾)(2−𝜍)
]                                                         (28) 

According to equation (28), by increasing the rate of time preference (𝜌 ↑) 
as well as the population growth rate (𝑛 ↑), the economic growth rate in a steady 

state will increase (𝑔∗ ↑). However, with increasing uncertainty (𝜎2 ↑), the 

economic growth rate in a steady state will decrease (cc). 

 

6. Empirical Evidence for the Iranian Economy 

The parameters of the finished goods and energy sector production functions 

are estimated in this section using data from the Iranian economy. The following 

is then calculated using these estimated parameters: 

1) Optimal rate of energy resources extraction (𝑟∗), (from equation 13)  

2) The share of labor and capital in the finished goods and energy production 

sectors (𝜂∗, 𝜃∗), (in equations 10 and 11) 

3) The optimum economic growth rate in a steady state (𝑔∗), (equation 14).  

It is worth noting that all of these rates are calculated under two different 
scenarios: certain and uncertain. 

Table 1 summarizes the parameters and exogenous variables affecting the 

Iranian economy and the source of any data. 

( )( )22 1 2 2

2
R

r r
g

   



+ − − +
=

( )( )2

*
1 2

4
r

   − −
=

2 r
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6.1 Calculation of the Fluctuation of Extractable Energy Resources 

We use the Hodrick-Prescott Filter to determine the fluctuation of extractable 

energy resources. The Hodrick-Prescott Filter is a smoothing technique frequently 

used to obtain an approximate estimate of a series' long-term trend element. The 

technique was first used by (Hodrick & Prescott, 1997) to analyze postwar U.S. 

business cycles. After that, this filter has been used in (Pedersen, 2001), (Yamada, 

2020), and (Sakarya & de Jong, 2020). 

Technically, the Hodrick-Prescott (HP) filter is a two-sided linear filter that 

calculates the smoothed series st of yt by minimizing the variance of around, 

subject to the constraints of the second difference of st. the HP filter chooses st to 

minimize (29). 

∑ (𝑦𝑡 − 𝑠𝑡)
2𝑇

𝑡=1 + 𝜆∑ [(𝑠𝑡+1 − 𝑠𝑡) − (𝑠𝑡 − 𝑠𝑡−1)]
2𝑇−1

𝑡=2                (29) 

The penalty parameter 𝜆 controls the smoothness of the series variance. The 

larger𝜆, the smoother the variance. As𝜆 → ∞, approaching a linear trend. 

According to (Ravn & Uhlig, 2002), the value of 𝜆 is used as a power rule 

of 2 (𝜆 = 100 for annual data, 𝜆 = 1600 for quarterly data, 𝜆 = 14400 for 

monthly data). EViews software was used to smooth the series of extractable 

energy resources (Rt) using the Hodrick-Prescott filter. Results for 𝜆 = 100 are 

shown in figure (1). Actual values, trends, and the growth rate of extractable 

energy resources (Rt) plus annual cycles are indicated in figure (1). 

 

 
Figure 1. Annual cycles of actual values, trends, and growth rates of extractable 

energy resources are derived using Hodrick-Prescott filters. 
Source: research findings 
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Using Hodrick-Prescott filters and the variance of the data produced by this 

filter, the volatility of the Iranian economy's extractable energy resources growth 

rate was determined to be 0.22 from 1974 to 2014 (𝜎2 = 0.22). 
 

6.2 Calculating the Production Function Parameter 

This section will calculate the parameters of the nonlinear production 

function discussed in equations (4 and 5). This study develops an alternative 

stochastic solution called the Genetic Algorithm (GA) approach for estimating the 

nonlinear production function. 

𝑌𝑡 = 𝐴𝐵
𝜒𝑟𝜅𝜒𝜂𝛼(1 − 𝜂)𝛾𝜒𝜃𝛽(1 − 𝜃)𝜆𝜒𝐾𝑡

𝛼+𝛾𝜒𝐻𝑡
𝛽+𝜆𝜒𝑅𝑡

𝜅𝜒 

A genetic algorithm (or GA) is a technique for solving optimization and 

search problems by calculating exact or approximate solutions. Genetic 

algorithms are regarded as heuristics for global search. Genetic algorithms are a 

subset of evolutionary algorithms that make use of evolutionary biology-inspired 

techniques such as inheritance, mutation, selection, and crossover (also called 

recombination) 

The common form of nonlinear regression models can be written as: 

𝑌𝑡 = 𝑓(𝑋𝑡, 𝜃) + 𝜀𝑡                               (30) 

Where X is an (𝑛𝑥1) vector of independent variables, Y is the dependent 

variable,  is a (𝑘𝑥1) (nonlinear) parameter vector, and  is a stochastic error. 

According to (Ruelle, 2018), nonlinear models show economic realities 

better than linear patterns. 

As in linear regression models, least squares or maximum likelihood 

methods are used in nonlinear regression models. In the least square method, 

                  (31) 

We can obtain the parameters of the nonlinear regression model (𝜃) by 

minimizing RSS in equation (31). In comparison with linear models, analytical 

solution methods are not sufficient in solving the parameters of nonlinear models, 

and therefore, we need to employ iterative numerical search methods (Öztürk and 

Altan, 2008). In order to obtain the normal equations for the nonlinear regression 

model given by equation (30), we applied least-square standards by taking the 

derivative of RSS in equation (31) with respect to 𝜃. (                                                 ).  

 

For a detailed study of the method of estimating the parameters of nonlinear 

patterns using a genetic algorithm, refer to (Eslamloueyan & Ostadzad, 2016). 

Table 1 summarizes the results of parameter estimation. 
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Table 1. Parameters and variables of the Iranian economy 

Parameter or variable Symbol Value Unit Reference 

Population growth rate 𝑛 1.5 percent Iran’s Statistics Center 

Inverse of intertemporal 

consumption elasticity of 

substitution  

𝜍 0.79 - Hadian and Ostadzad 

(2013) 

Production elasticity than 

capital in final goods 

sector 

𝛼 0.49 - The researchers' 

calculations 

Production elasticity than 

labor in final goods sector 

𝛽 0.26 - 

Production elasticity than 

energy in final goods 

sector 

𝜒 0.31  

Production elasticity than 

capital in energy-

generation sector 

𝛾 0.41 - 

Production elasticity than 

labor in energy-generation 

sector 

𝜆 0.38 - 

Production elasticity than 

extractable energy 

resource in energy-

generation sector 

𝜅 0.3 - 

Share of labor force in 

final good’s production 

sector 

𝜃 70 percent 

Share of capital in final 

good’s production sector 

𝜂 76 percent 

 

Rate of time preference 𝜌 0.024 - Eslamloueyan and 

Ostadzad (2014), 

(ABDOLI, 2009) 

Depreciation rate 𝛿 0.037 percent Amini and neshat (2005), 

(Ali Hossein Ostadzad & 

Behpour, 2015) 
 Source: research findings 

 

6.3 Model Calibration  

This section discusses the parameters that were estimated or assumed to be 

calibrated by the Iranian economy. Economic growth rate (eq. 28) and the 

extraction rate (eq. 27) within the steady state and according to different amounts 

of extractable energy resource fluctuations (𝜎) are indicated in figures (2) and (3). 

Economic growth has been subjected to sensitivity analysis in light of the 

uncertainty surrounding exhaustible resources. 

Empirical results show that with increasing energy resource volatility (𝜎 ↑) 
and uncertainty, the economic growth rate will reduce (𝑔∗ ↓), and secondly, the 

extraction resource rate will also decrease (𝑟∗ ↓). Our results conform to some 

studies, including (Beladi, Deng & Hu, 2021), (Shaukat, Khan, Jafri & Hanif, 



48  Hadiyan et al., Iranian Journal of Economic Studies, 10(1) 2021, 31-55 
 

2019), (Levi, 2019); and (Thanopoulou & Strandenes, 2017). When economics is 

confronted with an uncertain future, firms appear to be more willing to innovate, 

and increased uncertainty can spur R&D (Banerjee & Siebert, 2017). Thus, 

businesses require human capital (or "skilled labor," that is, researchers). As a 

result of the increased demand for human capital, households begin to invest more 

time in education than in the finished goods sector. This promotes human capital 

accumulation in the economy, allowing firms to use human capital for research 

and development. This channel promotes technological advancement, thereby 

increasing growth and economic welfare, as long as uncertainty persists (Tsuboi, 

2019). Simultaneously, as uncertainty increases, the standard negative effects of 

risk aversion start in and eventually supplant the former positive effect (Bekaert, 

Engstrom & Xu, 2019). 

 

 
Figure 2. Optimal extraction rate of energy resources based on  

uncertainty in proven reserved resources 
Source: research findings 

 

 
Figure 3. The optimal rate of economic growth based on  

the level of uncertainty in reserves 
Source: research findings 

 

We estimated the volatility of energy resources in section 6.1 as 

approximately 0.22, so considering (𝜎2 = 0.22) in fig (2) and (3), the economic 
growth rate in a steady state for the Iranian economy will be 7.1 percent. However, 

the extraction rate should be 1.1 percent to maintain a steady state of extractable 

energy resources. According to Figures 2 and 3, in the absence of 
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fluctuations(𝜎2 = 0), the resource extraction rate will be 1.2 percent, and the 

optimum economic growth rate is 8 percent. 

 

7. Conclusion 

When attempting to study a complex system, scientists frequently apply 

stochastic modeling and analysis theories to obtain a system description, 

assuming that this will increase our knowledge and comprehension. 

Uncertainty in exhaustible primary energy resources and their exploration 

can explain factors affecting economic growth and help achieve differences 

between countries with different growth rates. Therefore, it is helpful to study 

economic growth dynamics by considering the impact of stochastic non-

renewable resources on economic growth. It can be verified in the form of a 

stochastic growth model. 

Although several studies examined the influence of non-renewable primary 

energy resources on economic growth as a deterministic model, extractable 

random energy resources on economic growth are not considered in the stochastic 

growth model. In comparison to prior research, the most significant novelty in this 

study is: 

1- Considering the stochastic extractable energy resources in a sustainable 

endogenous growth model. 

2- Calculating the economic growth on a sustainable growth trajectory in a 

stochastic growth model in extractable primary energy sources than the 

deterministic extractable resource model. 

We considered the random level of extractable resources into account and 

developed a random generalized growth model. Then, we solved the stochastic 

model analytically (using Stochastic Hamilton Jacobin Bellman method). We 

solved the model and then applied it to the Iranian economy. Finally, we 

conducted a sensitivity analysis on the fluctuation parameters. 

The overall findings indicate that as energy resource uncertainty increases, 

economic growth declines, and the rate of resource extraction declines as well. It 

ultimately has the effect of slowing economic growth. 

Due to the variance of energy extracting in the Iranian economy, estimated 

by our model (𝜎2 = 0.22), the optimal economic growth rate in a steady state for 

this economy is 1.7 percent (in the case where neutral volatility and discounted 

intertemporal utility is maximized), and the rate of extraction should be 1.1 

percent for neutralizing fluctuations of extractable energy resources in a steady 

state. According to figures 2 and 3, the resource extraction rate will be 1.2 percent 

in the absence of fluctuations(𝜎2 = 0), and the optimum economic growth rate is 

8 percent. 
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