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This research examines the impact of investments in artificial 

intelligence (AI) on total factor productivity (TFP) across Iranian 

industries from 1997 to 2020, utilizing a comprehensive dataset 
organized by four-digit International Standard Industrial 

Classification (ISIC) codes. We employ the generalized method 

of moments (GMM) approach to address challenges such as 
endogeneity and collinearity within a dataset comprising over 200 

cross-sectional variables.Our results reveal that both physical and 

intangible investments significantly influence TFP; a 1% increase 
in physical investment results in a 0.514% rise in TFP, while 

intangible investment leads to a 0.288% improvement. A key 

innovation of this research is the introduction of an AI 
measurement variable in the production function, employing the 

Corrado, Hulten, and Sichel (CHS) methodology for a clearer 

assessment of AI's productivity effects.Although AI investment 
positively correlates with TFP, its current impact is limited, 

reflecting the gradual adoption of advanced technologies in 

Iranian industries. This highlights the need for a comprehensive 
strategy to fully realize the productivity benefits of AI. We 

recommend policies aimed at facilitating technology integration 

and workforce specialization, including investing in training, 
providing incentives for AI adoption, and promoting partnerships 

between businesses and educational organizations to enhance 

productivity and competitiveness in the global market. 
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1. Introduction  
AI has become a game changer across multiple sectors. It is revolutionizing 

how businesses operate, enhance efficiency, and improve customer experiences. 

Examples include automating routine tasks in manufacturing, providing 

personalized recommendations in retail, and enabling predictive analytics in 

healthcare. The integration of AI is reshaping existing processes and creating 

entirely new opportunities for innovation and growth. The integration of AI 

technologies into business processes has not only revolutionized traditional 

operations but has also created new opportunities for economic growth and 

efficiency. As AI continues to evolve, its applications span multiple sectors, 

including healthcare, finance, manufacturing, and retail, underscoring its 

ubiquitous influence on the modern economy.  In recent years, advancements in 

machine learning, natural language processing, and data analytics have 

significantly enhanced the capabilities of AI systems. According to Brynjolfsson 

and McAfee (2014), the rapid acceleration of AI technologies is leading to 

profound changes in how businesses operate, emphasizing the need for 

organizations to adapt to this new landscape. AI's ability to analyze large datasets 

and detect patterns allows businesses to make informed decisions, optimize supply 

chains, and improve customer experiences (Davenport & Ronanki, 2018).  In the 

healthcare sector, for instance, AI-driven applications have been utilized for 

patient diagnosis, treatment personalization, and administrative efficiencies that 

ultimately lead to better patient outcomes (Jiang et al., 2017). In finance, AI 

algorithms enable firms to automate trading, manage risks, and detect fraud at a 

previously unattainable scale (Dahlberg et al., 2021). Furthermore, in the 

manufacturing sector, AI facilitates predictive maintenance, which minimizes 

downtime and reduces operational costs (Tian et al., 2021). 

 The economic implications of AI are profound. According to a report by the 

McKinsey Global Institute in 2018, artificial intelligence has the potential to add 

$13 trillion to the global economy by the year 2030, emphasizing its role as a key 

driver of productivity across industries. Nonetheless, the implementation of AI 

brings along difficulties, particularly in terms of ethical issues, workforce 

displacement, and the need for robust governance frameworks (Binns, 2018). 

Organizations must navigate these complexities while striving to harness the 

benefits of AI.  In summary, AI's position in industry is not only pivotal but also 

increasingly indispensable. As technology progresses, the incorporation of AI into 

various sectors will yield further innovations, enhancing efficiency and enabling 

businesses to tackle complex challenges. 

The manufacturing industry has witnessed a dramatic transformation due to 

the integration of AI technologies, leading to significant enhancements in 

operational efficiency, product quality, and overall productivity. As manufacturers 

increasingly adopt AI-driven solutions, they are able to harness data analytics, 

automation, and machine learning to streamline their processes, reduce costs, and 

remain competitive in a rapidly evolving market. One of the key uses of AI in the 

manufacturing sector is predictive maintenance. Conventional maintenance 
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methods typically depend on predetermined schedules downtime, which can lead 

to unexpected disruptions and high costs. However, AI enables manufacturers to 

adopt a predictive maintenance approach by analyzing data from machinery and 

equipment to forecast failures before they occur. A report from the McKinsey 

Global Institute (2020) indicates that implementing predictive maintenance can 

lead to a reduction in maintenance expenses of as much as 30% and enhance 

equipment availability by 10-20%.The shift not only minimizes unexpected 

breakdowns but also extends the lifespan of machinery, enhancing overall 

operational efficiency. AI also has a vital role in quality control. Advanced 

computer vision systems powered by AI can inspect products at a much faster rate 

than human workers, identifying defects and deviations in real-time. For example, 

a study by Jha et al. (2021) demonstrates how manufacturers implementing AI-

driven visual inspection systems achieved significant improvements in defect 

detection rates, leading to reductions in waste and rework costs. By ensuring that 

only high-quality products reach the market, manufacturers can improve customer 

satisfaction and strengthen their competitive position.Moreover, AI boosts supply 

chain management by predicting demand changes and optimizing inventory levels, 

leading to reduced costs and improved efficiency. A research article by Choi et al. 

(2020) indicates that AI algorithms can examine  historical sales data analysis 

along with external factors (e.g., economic trends, seasonal variations) to forecast 

demand accurately. This capability allows manufacturers to adjust their production 

schedules and inventory management practices proactively, reducing excess stock 

and minimizing stockouts. The AI integration into supply chain logistics has the 

possibilities to save manufacturers an estimated 15-30% in inventory costs while 

improving service levels (Kamble et al., 2020).Additionally, the adoption of AI is 

facilitating the shift towards smart manufacturing. This concept involves the 

IoT(Internet of Things)  integration devices with AI to create connected 

ecosystems within manufacturing plants. For instance, AI can analyze real-time 

data from IoT sensors to optimize manufacturing processes dynamically. A report 

by the World Economic Forum (2021) highlights that AI-driven smart 

manufacturing can cause to a 10-30% increase in general equipment effectiveness 

(OEE) by minimizing waste and enhancing process efficiency.Furthermore, AI is 

revolutionizing product design and innovation in manufacturing. Generative 

design algorithms powered by AI can create multiple design alternatives based on 

specified parameters, enabling engineers to explore innovative solutions that 

would have been difficult to conceive through traditional methods. A case study 

by Autodesk (2021) illustrates how companies utilizing generative design 

achieved reductions in material usage by up to 80%, thereby decreasing costs and 

environmental impact.In conclusion, the integration of AI into the manufacturing 

industry is driving substantial changes that enhance efficiency, improve quality, 

and foster innovation. As manufacturers continue to explore AI technologies, the 

potential for increased operational performance and competitive advantage 

becomes increasingly evident. However, the successful implementation of AI also 

requires a strategic approach, including investment in workforce training and the 



318  EsmaeilySadrabasi et al., Iranian Journal of Economic Studies, 12(2) 2023, 315-343 

development of robust data governance frameworks to capitalize on the 

opportunities that AI presents. 

Productivity in industries is a critical measure of efficiency that directly 

impacts economic performance, competitiveness, and overall growth. High 

productivity allows firms to maximize output while minimizing input costs, 

thereby enhancing profitability and contributing to economic development. In the 

last few years, the adoption of AI has appear as a transformative force for 

improving productivity across various sectors. AI technologies can automate 

routine tasks, optimize supply chain operations, and facilitate data-driven decision-

making, which collectively contribute to significant gains in operational 

efficiency. For instance, AI systems can process large datasets to recognize 

patterns and insights and forecaste maintenance needs, ultimately reducing 

downtime and operational costs (McKinsey Global Institute, 2021). Furthermore, 

AI has the potential to significantly enhance product quality through sophisticated 

analytics and machine learning capabilities, which empower manufacturers to 

identify defects in real-time and elevate overall product standards (Jäger et al., 

2021). However, it is crucial to acknowledge that the effective implementation of 

Artificial Intelligence (AI) is contingent upon the integration of intangible assets, 

including skilled human capital and innovative organizational practices. Jäger et 

al. (2021) emphasize that without a conducive ecosystem fostering collaboration 

between technology and human expertise, the anticipated advantages of AI may 

not be fully actualized, leading to scenarios where investments do not yield the 

expected productivity gains. Similarly, Brynjolfsson and McAfee (2014) argue 

that the successful adoption of AI technologies necessitates an organizational 

culture that embraces continuous learning and adaptability. Consequently, while 

AI can markedly enhance productivity through intelligent automation and 

optimized operational processes, a lack of strategic alignment with existing 

workflows and capabilities may result in stagnation or even a decline in 

productivity outcomes (McKinsey Global Institute, 2021). This duality highlights 

the significance of a comprehensive approach to integrating AI, where both 

technological advancements and organizational competencies are aligned to 

achieve sustainable improvements in productivity (Jäger et al., 2021; Brynjolfsson 

& McAfee, 2014). 

In 2005, Corrado, Halton, and Sechel introduced a seminal framework for 

understanding intangible investment, categorizing it into three distinct types: 

computer information, innovative assets, and economic merits. This framework 

has proven particularly relevant in the context of the evolving investment 

landscape over the past two decades, from 2000 to 2022. Empirical studies indicate 

that intangible investments have become increasingly influential on economic 

performance, reflecting a notable shift in corporate investment strategies, 

particularly in Europe and the United States, where firms have progressively 

allocated resources toward a combination of tangible and intangible assets. The 

effects of this shift were particularly pronounced during the Great Recession, a 

period during which tangible investments plummeted and struggled to regain pre-
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recession levels. Conversely, intangible investments demonstrated a more robust 

recovery in the United States, attributed to their inherent flexibility and 

adaptability in fluctuating economic conditions. However, the rebound in Europe 

was less vigorous, highlighting a disparity in how different regions capitalize on 

intangible assets (Corrado, Haskel, Jona-Lasinio, & Iommi, 2018). Building on the 

foundational insights offered by Corrado et al. (2018), our study emphasizes the 

measurement of AI investments through the same framework established in their 

2022 research. We aim to explore how the characteristics of intangible 

investments, specifically in relation to artificial intelligence, contribute to 

enhancing productivity and economic growth. By applying their approach to the 

context of AI, this study seeks to elucidate the complexities and nuances involved 

in quantifying these investments, thereby providing a comprehensive 

understanding of their impact on contemporary economic dynamics. 

In this study, we adopt the framework previously outlined to measure 

investments in Artificial Intelligence (AI) and to scrutinize its effects on 

productivity across various industrial sectors. Specifically, we focus on data 

sourced from four-digit ISIC-coded industries, encompassing establishments with 

ten or more employees. This dataset spans the period from 1997 to 2020, providing 

a rich temporal dimension that enables us to investigate trends, correlations, and 

shifts in productivity related to AI investments over time. The methodology 

employed for data analysis utilizes a Generalized Method of Moments (GMM) 

model. This statistical approach is particularly advantageous as it allows us to 

address potential endogeneity issues that may arise in our empirical specifications, 

ensuring more reliable and valid estimates of the impact of AI investments on 

productivity. By leveraging panel data, we can control for both cross-sectional and 

time-series variations, thereby enhancing the robustness of our findings.Through 

this rigorous analytical framework, our research aims to elucidate the intricate 

dynamics between AI investments and productivity gains in various industries. We 

anticipate that our findings will not only contribute to the existing literature on 

technology and productivity but also provide actionable insights for policymakers 

and industry leaders seeking to leverage AI for enhancing operational efficiency 

and economic growth. By examining the relationship between AI investments and 

industrial performance, we hope to shed light on the strategic importance of 

intangible assets in the modern economic landscape. 

This paper is organized into seven distinct sections. The introduction provides 

the context our exploration. The subsequent section provides the research 

background, delving into the existing literature on investments in artificial 

intelligence (AI), its relationship with productivity, and its importance across 

various sectors.Next, we present the theoretical framework that underpins our 

analysis. We then move on to discuss the measurement of intangible investments 

and the application of AI within the context of our model. Following that, we will 

outline the econometric results, evaluating the impact of AI on TFP growth, 

particularly within sectors identified by 4-digit industry codes.The concluding 

section summarizes our findings, reflects on their policy implications, and 
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proposes potential directions for future research. Through this comprehensive 

exploration, we aim to provide valuable insights into the role of AI in industrial 

practices and its broader economic effects. 

 

2. A Review of the Related Literature  

Recent research on artificial intelligence (AI) and its impact on productivity 

in organizations has garnered significant attention from academics and economic 

experts. A study conducted by Corrado, Haskel,  & Jona-Lasinio (2020) adopts an 

intangible assets approach to investigate how AI influences productivity.This 

study demonstrates that AI technologies specifically affect organizational 

productivity, necessitating the existence of other intangible assets, including 

knowledge, workforce skills, and social capital. One of the key points highlighted 

in this research is that productivity growth arises not only from investments in new 

technologies but also from investments in these intangible assets and managerial 

capabilities that can effectively leverage these technologies.Furthermore, this 

study explores the mechanisms through which AI can contribute to enhanced 

productivity. These mechanisms include optimizing processes, improving 

accuracy and reducing errors in decision-making, and enhancing capabilities in 

data simulation and analysis. Ultimately, the findings emphasize the importance of 

investing in education and workforce skill development to fully capitalize on the 

potential of AI technologies. 

In the study of Marianne Saam(2024) investigates the macroeconomic 

productivity effects of AI. She posits that AI fundamentally transforms production 

processes and labor dynamics, enhancing productivity through mechanisms like 

task automation, improved data analysis, and more effective decision-

making.Saam emphasizes that realizing AI's productivity benefits depends on 

complementary investments in human capital and infrastructure, highlighting the 

importance of an educated workforce and supportive institutional frameworks. 

Thus, effective policy interventions should account for the broader socioeconomic 

context to maximize AI's potential. 

In “The Productivity J-Curve: How Intangibles Complement General Purpose 

Technologies,”   Erik Brynjolfsson  (2021) examines the relationship between 

intangible assets and the productivity impacts of general-purpose technologies 

(GPTs). He introduces the "productivity J-curve," which illustrates a temporary 

decline in productivity following the adoption of new technologies, followed by a 

rise as firms invest in complementary intangibles, such as employee training and 

organizational innovation.Brynjolfsson emphasizes that the full benefits of GPTs 

like AI and automation often require firms to adapt their processes and invest in 

intangible resources. His findings suggest that organizations that effectively 

harness these intangibles can accelerate productivity improvements and enhance 

overall economic performance  .Furthermore, emphasizing the significance of 

making strategic investments in both technological advancements and intangible 

assets is crucial. 
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In the article "The Simple Macroeconomics of AI," Daron Acemoglu 

(2022) examines the macroeconomic implications of artificial intelligence (AI), 

offering a theoretical framework to understand its impact on productivity, 

innovation, and the labor market. Acemoglu argues that AI serves as a general-

purpose technology that can drive significant economic transformation.A core 

tenet of Acemoglu's analysis is the recognition of intangible capital and the role it 

plays alongside AI in enhancing productivity. He posits that the successful 

integration of AI technologies depends on complementary investments in human 

capital, organizational structure, and institutional frameworks. This emphasizes 

the importance of policy measures that not only promote AI development but also 

invest in education and training programs to prepare the workforce for the evolving 

job landscape.Additionally, Acemoglu highlights the potential for structural 

changes in the labor market as a result of AI. While AI has the capability to 

automate routine tasks, it also creates demand for more skilled labor, suggesting a 

dual effect on employment dynamics. This necessitates a careful consideration of 

labor policies to address inequality and ensure that the benefits of AI 

advancements are widely shared across community. Overall, Acemoglu's work 

provides valuable insights into the interplay between technology and economic 

structures, underscoring the need for a comprehensive approach that integrates 

technological advancements with strategic investments in human capital and 

supportive policies. 

In the paper "Artificial Intelligence and Firm-Level Productivity," Dirk 

Czarnitzki, Gastón P. Fernández, and Christian Rammer (2022) investigate the 

effect of AI on productivity at the firm level, highlighting AI as a general-purpose 

technology that significantly enhances operational efficiency. The authors 

emphasize the role of intangible assets—such as knowledge and training—in 

maximizing the productivity gains from AI adoption. They argue that the 

successful integration of AI depends on a firm's ability to harness these intangibles, 

underscoring the importance of human capital and organizational 

capacity.Furthermore, while AI can drive substantial productivity improvements, 

the benefits vary across firms based on factors like size, industry, and management 

quality. This variation suggests that policymakers should promote equal access to 

AI technologies and training to mitigate disparities in productivity 

enhancements.Overall, the paper illustrates that leveraging AI for productivity 

requires not only technological advancements but also strategic investments in 

human resources. 

In the research paper titled "The Economics of Artificial Intelligence: A 

Survey," Laura Abrardi, Carlo Cambini, & Laura Rondi (2019) provide a 

comprehensive examination of the economic implications of AI. The authors 

explore various dimensions of AI, focusing specifically on its influence on 

productivity and economic structures.A central theme of the paper is the 

examination of AI as a transformative technology that can potentially reshape 

industries by enhancing efficiency and fostering innovation. The authors assert that 

AI impacts productivity by automating routine tasks, optimizing processes, and 
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enabling more informed decision-making. This aligns with the understanding that 

AI can serve as a catalyst for comparative advantage in many sectors, altering 

competitive dynamics in both established and emerging industries.The survey 

emphasizes the critical role of complementary investments in human capital and 

infrastructure alongside AI implementation. It highlights that while AI can drive 

productivity gains, these benefits are contingent upon the development and 

integration of capabilities of organizational and training programs. The authors 

argue that productivity improvements from AI are not solely derived from 

technology; rather, they often depend on a firm’s ability to assimilate and utilize 

AI effectively.Moreover, Abrardi, Cambini, and Rondi discuss the 

potential economic disparities that may arise as a result of uneven AI adoption. 

They emphasize the importance of policy interventions that promote inclusive 

access to AI technologies, ensuring that the productivity benefits are broadly 

shared across different sectors of the economy. Overall, the paper provides a 

foundational understanding of the economic dimensions of AI, significantly 

contributing to the discourse on how AI can enhance productivity while addressing 

societal challenges. 

According to a report by the OECD (2024), Artificial Intelligence (AI) 

significantly impacts productivity, distribution, and economic growth by 

enhancing efficiency through automation, fostering innovation, and reshaping 

labor markets. Initial evidence indicates that sectors that adopt AI experience 

notable productivity gains; however, concerns about income inequality arise as 

benefits may disproportionately favor technology owners and skilled workers. 

Policymakers face challenges in creating regulatory frameworks, addressing 

workforce skill gaps, and strengthening social safety nets to reduce the disruptive 

impacts of AI. 

In their commentary, Baily & Kane (2024) discuss the transformative effect 

of Artificial Intelligence (AI) on productivity, highlighting that AI technologies 

are poised to enhance efficiency across various sectors. The authors argue that AI 

can automate routine tasks, allowing human workers to focus on higher-value 

activities, which can lead to significant productivity gains. Furthermore, they 

emphasize that the integration of AI into business processes will spur innovation 

by enabling more data-driven decision-making and optimizing resource allocation. 

However, the authors caution that to fully realize these potential gains, 

organizations need to invest in workforce training and adopt strategies to 

effectively manage the transition to more AI-centric operations. 

Jan et al. (2022) conduct a systematic review of the role of AI in the context 

of Industry 4.0, highlighting its diverse applications, inherent challenges, and 

potential opportunities. The authors outline how AI technologies, such as machine 

learning and data analytics, are increasingly integrated into manufacturing 

processes to enhance operational efficiency, improve decision-making, and enable 

predictive maintenance. However, they also identify significant challenges, 

including data privacy concerns, the need for standardized protocols, and the 

workforce's adaptability to new technologies. The study emphasizes the 
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importance of strategically addressing these challenges to leverage AI's full 

potential in the industrial sector, ultimately driving innovation and competitive 

advantage . 

 

3. The Study Model  

3.1 Theoretical Foundations of Productivity, Production Function, and the 

Influence of Technology 

The production function is a mathematical expression of the relationship 

between various inputs (such as labor, capital, and technology) and the output 

(goods or services produced). The production function can be expressed in a 

general form as: 

𝑄 = 𝑓(𝐿, 𝐾, 𝑇)                                                                                                                  (1) 
                                               

where: Q: Quantity of output ,L: Labor input ,K: Capital input ,T: Technology 

input 

This function illustrates how different combinations of resources can lead to 

varying levels of production (Varian, 1992).  Productivity refers to the ratio of 

output (product) to input (resources such as labor and capital) and is used as a 

measure of the efficiency of economic systems. Productivity can be calculated as 

follows: 

Productivity=Output/Input.  

Total Factor Productivity reflects the effects of technology and managerial 

efficiency on productivity. Changes in TFP indicate improvements or declines in 

output relative to the combined inputs, making it a critical factor in explaining 

economic growth (Solow, 1957). 

Technology, especially new technologies like artificial intelligence (AI), 

significantly influences productivity in production processes. New technologies 

lead to the automation of production processes, reducing production time and 

increasing efficiency. The implementation of robotics and AI systems in 

manufacturing can diminish costs while enhancing speed and accuracy 

(Brynjolfsson & McAfee, 2014).Advanced technologies such as machine learning 

and big data analytics assist in optimizing supply chains, forecasting demand, and 

managing inventories, all leading to lower operational costs (Chui, Manyika, & 

Miremadi, 2016). New technologies allow firms to create a broader range of 

products and services with higher quality and lower costs, thereby enhancing 

diversity and attracting new customers (Porter & Heppelmann, 2014). 

Neoclassical production models explore the impact of inputs and technology 

on production, emphasizing the interactions between labor, capital, and 

technology. These models highlight the importance of returns to scale and human 

capital in production (Mankiw, Romer, & Weil, 1990,1992). 

The Solow growth model investigates how capital accumulation and 

technological progress influence production capabilities and economic expansion. 

Within this framework, technological advancements are regarded as the central 
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factor contributing to economic growth and enhancements in productivity (Solow, 

1956). 

The introduction of technology into the production function also comes with 

challenges, including: 

Investment and Costs: The significant expenses involved in adopting and 

sustaining cutting-edge technologies can pose challenges for numerous companies 

(Susskind & Susskind, 2015). 

Training and Workforce Skills: To fully leverage new technologies, the 

workforce needs training and skill enhancement (Bessen, 2019). 

Social and Economic Concerns: Technological changes may impact labor 

markets and create social unrest, necessitating appropriate management and policy 

measures (Frey & Osborne, 2017). 

Technology, particularly artificial intelligence, is recognized as a critical 

factor in enhancing productivity and optimizing the production function. 

Understanding these theoretical foundations helps researchers and decision-

makers improve economic performance and effectively utilize new technologies. 

However, the integration of technology also requires careful consideration of 

challenges and barriers to ensure that productivity gains translate into sustainable 

economic growth. 

 

3.2  Calculating Productivity Using the Divisia Index 

The Divisia Index is a widely utilized method for calculating productivity 

measures, especially Total Factor Productivity (TFP). This index assists in 

capturing the changes in both input quantities and output, yielding a 

comprehensive understanding of productivity dynamics over time. 

The general formula to calculate TFP using the Divisia Index is: 

𝑇𝐹𝑃𝑡 =
𝑌𝑡

∏ 𝑋
𝑖𝑡

𝑤𝑖𝑡𝑛
𝑖=1

                                                                                      (2) 

Where:TFPt = Total Factor Productivity at time t,Yt = Total output (e.g., 

GDP or production) at time t,Xit = Quantity of the ith input at time t,wit = Time-

varying weights representing the share of the ith input in total output, and n = Total 

number of inputs being considered (Diewert, 1976). 

To calculate Total Factor Productivity (TFP) using the Divisia Index, the first 

step is to determine the total output, denoted as Yt, which involves measuring the 

total production or GDP for the period under analysis. Next, it is essential to 

identify the inputs involved in the production process, such as labor, capital, and 

other relevant resources, represented as Xit. Following this, the weights (wit) for 

each input must be calculated to determine their shares, expressed as 

wit =
PitXit

P0Yt
                                                                                                            (3)     

where Pit is the price of the input i at time t and P0 is the price level at a base 

period (Caves, Christensen, & Diewert, 1982). After calculating these values, the 

Divisia Index can be computed by inputting the results into the formula to derive 

TFP. Finally, by analyzing how TFP changes over time, researchers can evaluate 
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the impacts of technological advancements, efficiency improvements, and other 

factors that influence productivity (O'Mahony & Vecchi, 2005). 

The Divisia Index offers several significant advantages that enhance its utility 

in measuring productivity. One of its primary strengths is its ability to account for 

substitution effects among inputs, thereby providing a more accurate reflection of 

productivity changes. Additionally, the Divisia Index captures variations in 

technological advancements and efficiency improvements more precisely than 

alternative indices, making it particularly valuable in dynamic economic 

environments. Furthermore, this index is adaptable to various types of data, 

allowing for adjustments related to prices and different categories of inputs, which 

increases its applicability across diverse sectors and research scenarios (Jorgenson, 

1986). 

 

3.3 Methodology for Estimating Capital Stock Including Physical, Intangible, 

and Artificial Intelligence Investments 

To determine the capital stock, we employ a comprehensive approach that 

encompasses physical capital, intangible assets, and new investments in artificial 

intelligence. Specifically, we apply the Perpetual Inventory Method (PIM), which 

estimates the current capital stock based on past investments and depreciation rates 

(Jorgenson, 1963). This method starts with an initial capital stock value, typically 

derived from historical data, and adds new investments made during the period 

while subtracting depreciation. 

The formula for calculating capital stock (Kt) at time t using the PIM is as 

follows: 

𝐾𝑡 = 𝐾𝑡−1 + 𝐼𝑡 − 𝛿𝐾𝑡−1                                                                                      (4)                                              
 

where Kt−1 is the capital stock from the previous period, It represents new 

investments made in period t, and δ indicates the depreciation rate. Through this 

approach, we can incorporate both physical assets, such as machinery and 

infrastructure, and intangible assets, including intellectual property and brand 

equity (Kendrick, 1976). Importantly, our analysis also considers the rapidly 

evolving field of artificial intelligence as a new form of investment, recognizing 

its potential to significantly impact productivity and economic growth 

(Brynjolfsson & McAfee, 2014). 

By systematically adopting this method, our study aims to provide a robust 

evaluation of capital stock that reflects both traditional and modern forms of 

investment. This dual focus enables a more nuanced understanding of how various 

types of capital contribute to overall economic performance (Corrado, Hulten, & 

Sichel, 2006). 
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3.4 Methodology for Estimating Capital Stock Including Physical, Intangible, 

and Artificial Intelligence Investments 

The CHS framework has been utilized to assess intangible investments, 

categorizing them into three main groups: 

 
Table 1. Classification of Intangible Investments Using the CHS Framework 

Group Name Type of Knowledge Capital 

Computerized 

Information 
Software, Database 

Innovative Property 
R&D, Mineral Exploration, Design, Creative Works (e.g., 

literature and art) 

Economic 

Competencies 

Training, Market Research and Branding, Business Process Re-

engineering 

Source: Corrado, Haskel, Lasino (2005) 

 
Table 1 presents a classification of intangible investments categorized under 

three distinct groups: Computerized Information, Innovative Property, and 

Economic Competencies. 

1. Computerized Information: This category includes assets such as software 

and databases. These components are crucial in today’s digital economy, 

providing organizations with the necessary tools to store, manage, and 

analyze data efficiently. 

2. Innovative Property: This group encompasses research and development 

(R&D), mineral exploration, design, and creative works, such as literature 

and art. Investments in this category reflect a firm’s commitment to 

innovation and creativity, which are essential drivers of long-term 

economic growth and competitive advantage. 

3. Economic Competencies: This classification includes various forms of 

training, market research, branding, and business process re-engineering. 

These competencies enhance a firm's capabilities, ensuring that it can 

adapt to changing market conditions and improve operational efficiency. 

The classification provided in this framework highlights the diverse nature of 

intangible investments and their integral role in fostering innovation and economic 

development. Understanding these categories allows organizations to strategically 

allocate resources toward enhancing their knowledge capital, ultimately leading to 

improved performance and competitiveness. 

Corrado et al. (2005) further refined this classification, expanding it to nine 
distinct categories of intangible investments: 
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Table 2: Detailed Classification of Intangible Investments According to the CHS 

Framework 

a) Computerised information 

1. 1 Computer Software: Encompasses costs associated with software developed for in-

house use, including three components: personal use software, purchased software, 

and bespoke applications. 

2. Computer Databases 

b) Innovative investment: 

3. Scientific and Engineering R&D: Refers to expenses related to the development of new 

products and production processes, typically resulting in patents or licenses; particularly 

relevant in the manufacturing, software publishing, and telecommunications sectors. 

4. Mineral Exploration: Involves costs associated with discovering new mineral deposits, 

mainly within the mining industry. 

5. Copyrights and Licenses: Pertains to investments for developing creative arts and 

entertainment, notably in the information sector (excluding software publishing). 

6. Other Product Development Costs: Covers expenditures on design and research that do not 

necessarily result in patents or copyrights, commonly found in financial services and other 

sectors. 

c) economic qualifications 

7. Brand Equity: Relates to advertising and market research costs for brand and trademark 

development, including the purchase of advertising services and conducting market studies. 

8. Special Human Capital: Represents expenses for enhancing employee skills through job 

training and tuition for job-related education. 

9. Organizational Structure: Encompasses costs associated with organizational changes and 

development, including company formation, although comprehensive statistical data in this 

area may be lacking. 

source: Corrado, Haskel, Lasino (2005) 

 
Table 2 provides a comprehensive classification of intangible investments 

aligned with the CHS framework, subdividing these investments into three main 

categories: Computerised Information, Innovative Investment, and Economic 

Qualifications. 

a) Computerised Information 

1. Computer Software: This includes all costs associated with software 

developed for in-house use. The category is further divided into three 

components: personal use software, purchased software, and bespoke 

applications tailored to specific organizational needs. 

2. Computer Databases: Investments in databases that facilitate data 

management and analysis are included in this category, enhancing an 

organization's ability to leverage information effectively. 

b) Innovative Investment 
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3. Scientific and Engineering R&D: This category covers expenses related 

to the development of new products and production processes, often 

leading to patents or licenses. It is particularly relevant in sectors such as 

manufacturing, software publishing, and telecommunications. 

4. Mineral Exploration: Costs incurred in discovering new mineral deposits 

fall under this investment, primarily relevant to the mining industry. 

5. Copyrights and Licenses: Investments aimed at developing creative works 

in the arts and entertainment sectors, especially in information-related 

fields, are captured here, excluding those related to software publishing. 

6. Other Product Development Costs: This encompasses expenditures on 

design and research activities that may not result in patents or copyrights 

but are crucial for innovation in various sectors, including financial 

services. 

c) Economic Qualifications 

7. Brand Equity: This involves costs related to advertising and market 

research aimed at developing and sustaining brand identity, including 

expenses for advertising services and market studies. 

8. Special Human Capital: Investments in training and tuition for employees 

to enhance their skills through job-related education fall under this 

category, emphasizing the importance of workforce development. 

9. Organizational Structure: This encompasses costs associated with 

changes in organizational dynamics, including company formation. 

However, comprehensive statistical data in this area may be limited. 

This detailed classification underscores the multifaceted nature of intangible 

investments and their significance in fostering innovation, enhancing operational 

capabilities, and achieving competitive advantage in today's economy. 

In the context of Iran's economy, estimating intangible investments in 

industrial enterprises poses challenges due to limited statistical data. However, it 

is possible to leverage ISIC (International Standard Industrial Classification) codes 

to obtain more accurate assessments. Using data from the Iranian Statistics Center, 

the nine components of the CHS (Corrado, Haskel, Lasino, 2005) framework can 

be effectively grouped into four main categories represented by four-digit ISIC 

codes. These categories include Computer Software Data, which encompasses 

investments in software development crucial for enhancing operational 

efficiencies; Research and Laboratory expenditures, reflecting spending on 
scientific research and development activities vital for innovation; Advertising, 

Marketing, Exhibitions, and Media costs, which capture investments aimed at 

brand building and market penetration; and Educational Services, highlighting 
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expenditures for employee training and skill enhancement. By employing this 

approach, researchers and policymakers can obtain a clearer picture of intangible 

investments within Iran's industrial sector, enabling more informed decision-

making and fostering economic growth. 

AI   is increasingly recognized as a transformative force in the economy, but 

a significant challenge lies in effectively quantifying its impact and properly 

integrating these measurements into national accounts. Experts categorize AI as a 

blend of hardware, software, and databases, suggesting that investments in AI 

should be classified as productive investments (Brynjolfsson & McAfee, 2014). A 

pressing question is how to accurately represent these costs in national economic 

indicators while understanding the implications of not accounting for them on the 

estimated growth of total factor productivity (TFP). In this framework, AI 

expenditures can be viewed as expenses primarily associated with software and 

databases and analyzed in accordance with existing methodologies for intangible 

investments. For instance, pursuant to Corrado et al. (2006), intangible 

investments  can be classified into three categories.: Computerized Information 

(which encompasses software and databases), Research and Development 

(focusing on the design and advancement of new products), and Brand Equity and 

Organizational Development (covering training and organizational restructuring). 

AI investments undoubtedly fall into the first category, yet the development of 

novel algorithms fits into the realm of R&D, highlighting AI's dual role in 

enhancing both software capabilities and product innovation. Furthermore, the 

implementation of AI tools is likely to intersect with marketing research and IT 

consultancy, fostering improvements in organizational efficiency and overall 

process optimization. Companies that effectively integrate AI into their operations 

may find themselves benefiting from enhanced innovation and diversification, 

positioning themselves advantageously within the marketplace (Chui et al., 2016). 

This multifaceted interrelationship highlights the importance of a comprehensive 

approach to understanding and quantifying AI's economic contributions, 

ultimately influencing growth trajectories and strategic resource allocation in 

various sectors. 

 

3.5 Model 

To assess the significance of incorporating these assets, we can analyze 

growth trajectories both with and without their inclusion. A detailed formal model 

is presented in the Appendix; however, in this discussion, we aim to convey our 

findings with minimal reliance on mathematical expressions. 

Examining growth without accounting for these investments highlights the 

critical importance of including them in our evaluations. To facilitate this 

understanding, we have formally outlined a model to assess the impact of such 

technological investments. 

In an economy characterized by labor L, added value can be represented as Q, 

with tangible investment labeled as Kand intangible investment noted as R. 
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Productivity can be deduced
QA  through a specific formulation. Consequently, 

production growth is expressed as follows: 

𝑑𝑞 = 𝜎𝐿
𝑄
 𝑑𝑙 + 𝜎𝐾

𝑄
 𝑑𝐾 + 𝜎𝑅

𝑄
 𝑑𝑅 + 𝑑𝑎𝑄                                                             (5)                                              

In this equation, du  denotes the change in the natural logarithm of the 

variable 
, Q

xu 
, while the proportion of the input X with respect to Q signifies the 

production elasticity concerning inputs L, K, and R. The term 
Qda  represents 

variations in the productivity of the utilized inputs, in addition to any growth 

effects stemming from inputs, such as "spillover" benefits resulting from the partial 

applicability of intangible assets. 

Now, we can rewrite the previous equation as follows:  

𝑑𝑣 = 𝜎𝐿
𝑣 𝑑𝑙 + 𝜎𝐾

𝑣𝑑𝑘 + 𝑑𝑡𝑚
𝑁𝑜𝑛𝑖𝑛𝑡𝑎𝑛                                                                     (6)  

Here, 
tanNoIn

mdt
is calculated as the residual. The relationship 

between 
tanNoIn

mdt
 and ad

and other variables is expressed by: 

 

𝑑𝑡𝑚
𝑁𝑜𝑛𝑖𝑛𝑡𝑎𝑛 = 𝑑𝑎𝑄⏟

𝑡𝑒𝑐ℎ 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝑠

− 𝜔𝑁
𝑄(𝑑𝑛 − 𝑑𝑣)⏟        

𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑛𝑒𝑤 𝑖𝑛𝑡𝑎𝑛 𝑜𝑢𝑡𝑝𝑢𝑡

+ 

𝜎𝑅
𝑄
𝑑𝑟⏟  

𝑖𝑛𝑡𝑎𝑛 𝑖𝑛𝑝𝑢𝑡

+ (𝜎𝑋
𝑄
− 𝜎𝑋

𝑉)𝑑𝑥⏟        
𝐾,𝐿 𝑠ℎ𝑎𝑟𝑒𝑚𝑖𝑠𝑚𝑒𝑎𝑠

                                                                            (7) 

In this equation, dn  represents the change in intangible investments, while 

its 
Q

Nw
 proportionate impact on Q and x alongside inputs K and L (excluding R) is 

considered. The left side of Equation 7 represents TFP as measured, using V as the 

output , K, and L  as inputs. 

The right side of the equation elucidates what this measured residual signifies. 

Firstly, it indicates any changes in 
AQ

, which may reflect shifts in technology or 

efficiency. Secondly, it highlights the unaccounted effects of intangible 

investments. 

                                  
4. Empirical Results  

As previously mentioned, this study employs the International Standard 

Industrial Classification (ISIC) codes for Iranian industries, organized into four-

digit classifications, to implement our analytical model. We utilized the 

Generalized Method of Moments (GMM), which is particularly beneficial when 

the number of cross-sectional units (N) exceeds the number of time periods (T). In 

our analysis, the dataset comprises over 200 cross-sectional units, which surpasses 

the number of years under consideration. The application of the GMM 

methodology, specifically within the context of Dynamic Panel Data, provides 

several advantages, including the incorporation of individual heterogeneity, 

improved informational efficiency, and the reduction of biases commonly 
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associated with cross-sectional regressions. These benefits culminate in more 

accurate estimates with diminished collinearity. 

GMM offers several advantages that make it a preferred estimation technique 

in econometric analysis. One of the primary benefits is its capability to address the 

endogeneity of institutional variables by treating lagged and differenced variables 

as potential instrumental variables, thereby reducing bias associated with 

unobserved errors (Green, 2008). Additionally, the inclusion of lagged dependent 

variables mitigates collinearity issues within the model, as it minimizes the 

likelihood of correlation between differenced and level variables related to 

institutions and other factors such as human capital. Dynamic GMM also 

effectively eliminates time-invariant variables, including cultural and 

environmental factors that could introduce bias in the estimation of per capita 

income and development (Baltagi, 2008). Furthermore, this method enhances the 

temporal dimension of the analysis, allowing for the identification of long-term 

relationships among variables, which is often lacking in cross-sectional studies. In 

our GMM model, the variable Lp represents total factor productivity (TFP), 

while Ll and Lk denote labor and capital inputs, respectively, encompassing both 

physical and intangible investments, excluding artificial intelligence components. 

According to the CHS study, intangible investments comprise computer 

information, research and development, and economic qualifications, with a 

particular focus on the ICT sector. To effectively capture the contributions of 

various technologies, we employed the LAI parameter classifies sectors into four 

different tiers: low-tech, moderately low-tech, moderately high-tech, and high-

tech.. By stratifying these industries and assigning greater weight to high-tech 

sectors through a dummy variable, we enhanced the robustness of our model. 

Overall, this research investigates the impact of a novel investment, 

specifically artificial intelligence, on the productivity of Iranian industries from 

1997 to 2020. We employed a CHS framework to quantify AI investments, 

assigning higher weights to industries with advanced technologies. This variable 

is denoted as AI. The TFP variable corresponds to total factor productivity within 

the industries, while the K variable is derived from intangible and physical 

investments, excluding those related to artificial intelligence. The L variable 

represents the workforce engaged in the industries under study. Prior to estimating 

the model, we assessed the stability of the variables using the Levin, Lin, and Chu 

(LLC), Im, Pesaran, and Shin (IPS), and Fisher (ADF) tests. The results presented 

in Table 3 indicate that most variables, regardless of time trends and differencing, 

and some with first-order differencing at the 99% level of significance, dismiss the 

null hypothesis of the unit root examination.. This confirms that all variables 

utilized in the model are stationary. 
 

Table 3. The results of the unit root test of model variables 

 

Variable 

Tests 

LLC IPS ADF 
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Level 
First order 

difference 
Level 

First order 

difference 
Level 

First order 

difference 

TFP -5.09 

(0.0029) 

-15.03 

(0.0000) 

5.15 

(1.0000) 

-19.06 

(0.0000) 

189.42 

(1.0000) 

823.78 

(0.0000) 

K -2.09 

(0.0356) 

-19.56 

(0.0000) 

4.01 

(0.8925) 

-24.00 

(0.0000) 

168.02 

(0.7029) 

1145.02 

(0.0000) 

L -10.02 

(0.0000) 

-15.02 

(0.0000) 

-2.68 

(0.0023) 

-18.03 

(0.0000) 

350.05 

(0.0000) 

695.03 

(0.0000) 

AI -3.26 

(0.0000) 

-12.65 

(0.0000) 

-0.36 

(0.5237) 

-19.85 

(0.0000) 

107.05 

(0.3546) 

856.02 

(0.0000) 

Source: Authors' own calculations 

In this section, we present the estimation of Equation 5 utilizing the GMM 

model, based on company size data obtained from the Statistical Center of Iran. 

The results are summarized as follows: 

 
Table 4. AI and TFP* 

(Prob.) (Std. Error ) Coefficient) ) (Variable) 

0.0000 0.0025 0.213 LTFP(-1) 

0.0000 0.0194 0.514 LK 

0.0000 0.0275 0.2881 LL 

0.0218 0.023 0.0538 LAI 

2906 

Number of 

observations 

(N) 

195.235 

(0.503) 
Sargan,  J-statistic 

137 
Instrument 

Rank 
0.781 S.E. of regression 

 

Arellano-Bond Serial Correlation Test : 

0.942 

(0.2573) 
AR(2) 

-3.481 

(0.0001) 

 

AR(1) 
           * L refers to the logarithm 

Source: Authors' own calculations 

 

The findings presented in Table 4 reveal critical insights into the determinants 

of Total Factor Productivity (TFP) within Iranian industries. Specifically, both 

physical and intangible investments (LK) and labor inputs (LL) exhibit a 

significant positive impact on TFP. The analysis shows that a 1% increase in 
physical capital is associated with a substantial 0.514% rise in TFP, reflecting the 

essential role of tangible and intangible investments in enhancing productivity. 

Similarly, labor inputs contribute positively, with a 1% increase resulting in a 
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0.288% increase in TFP. These coefficients underscore the effectiveness of 

traditional investment strategies in driving productivity improvements in the 

industrial sector1. 

In contrast, the effect of artificial intelligence (AI) investment (LAI) is 

markedly different. Although the statistical analysis indicates that AI investment 

does exert a positive influence on TFP, with a coefficient of only 0.0538, this 

represents a relatively modest contribution. A 1% increase in AI investment leads 

to just a 0.0538% increase in TFP. This modest impact suggests that while there is 

significant potential for AI to enhance productivity, its current role in Iranian 

industries is limited. These industries continue to rely heavily on conventional 

technologies rather than fully integrating advanced AI solutions, which may hinder 

their overall productivity growth. 

Therefore, these findings highlight the necessity for Iranian industries to not 

only focus on enhancing physical and labor investments but also to prioritize the 

adoption and effective integration of AI technologies. By doing so, they can unlock 

the potential benefits of AI and foster a more robust increase in TFP, ultimately 

contributing to enhanced economic performance. 
 

5. Concluding Remarks  

Productivity is a crucial metric that quantifies the efficiency of resource 

utilization—specifically labor and capital—in the production of goods and 

services. In industrial contexts, productivity refers to the effectiveness of 

transforming various inputs, such as labor, materials, and capital, into outputs. This 

metric serves as a vital indicator for assessing the performance and 

competitiveness of businesses, reflecting their ability to generate value from 

available resources. Several factors influence Total Factor Productivity (TFP) 

within industries, including innovation through research and development, 

advancements in technology, and the skills and education of the workforce. 

Effective management practices and organizational structures further enhance 

productivity, while economies of scale can lead to reduced average costs and 

improved TFP. 

Additionally, competitive market conditions drive industries to optimize 

resource utilization and enhance efficiency. The quality of infrastructure, 

encompassing transportation and communication systems, plays a significant role 

in shaping TFP, as does the legal and regulatory environment, which can facilitate 

or hinder innovation. Furthermore, investment decisions concerning machinery 

and equipment directly affect TFP, as well as the availability of high-quality raw 

materials and energy resources. Collectively, these factors contribute to a 

comprehensive understanding of productivity dynamics within industries, 

 
1 Previous studies have confirmed the same results, indicating that both types of investments—tangible and 

intangible—as well as labor, have a meaningful and positive impact on productivity(Esmaeilysadrabadi et 

al.(2021 and 2023) 
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highlighting the interplay between innovation, resource management, and external 

conditions that drive overall performance. 

Focusing on these factors and striving for continual improvement are 

essential for achieving higher TFP and fostering sustainable economic growth. 

Previous studies indicate that investments aligning with the aforementioned 

categories—and including both professional and non-professional labor—can 

significantly impact TFP. Notably, Iranian industries are no exception, as 

supported by the findings of our research. 

The AI  integration into industrial processes can lead to noteworthy 

improvements in TFP by enhancing operational efficiency, reducing costs, and 

promoting innovation. Numerous studies conducted in European and American 

industrial contexts corroborate this assertion. However, our research focusing on 

Iranian industries, specifically employing four-digit International Standard 

Industrial Classification (ISIC) codes from 1997 to 2020, reveals discrepancies 

with findings from other countries. Despite identifying a positive impact of AI 

investment on TFP, the magnitude of this effect remains minimal, indicating that 

Iranian industries have yet to embrace emerging technologies comprehensively. 

Given the rapid advancement of technology, it is crucial for Iranian industries 

to modernize their production processes. We recommend facilitating the 

introduction of AI technologies and investments within the production sector, 

followed by a focus on enhancing the factors affecting production through 

technological updates. This may necessitate the acquisition of more advanced 

machinery and the cultivation of a more specialized workforce. 

In summary, AI has the potential to significantly transform Iranian 

manufacturing by enabling the automation of repetitive tasks, thereby increasing 

production rates, lowering labor costs, and minimizing human error. Furthermore, 

AI can optimize energy consumption in manufacturing processes, contributing to 

cost reductions and sustainability initiatives. Overall, AI is poised to revolutionize 

manufacturing through enhanced efficiency, reduced costs, and greater innovation 

and flexibility in production processes. 
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Appendix A: Intangible Capital and TFP: A Theoretical Analysis 

The traditional Cobb–Douglas production function, which includes the 

conventional inputs of physical capital and labor, is formulated as follows: 

𝑌𝑖𝑡 = 𝐴𝑖  𝐾𝑖𝑡
𝛽1  𝐿𝑖𝑡

𝛽2𝑒𝑖𝑡                                                                                                            (1) 

where: 

• Y is the value added, 

• K is the stock of capital, 

• L is the labor units, 

• A stands for the efficiency level, 

• e is the error term, 

• i=1,2,…,N=135 (for the four-digit ISIC codes), and 

• t=1,2,…,T=26 (for the period of 1996–2020). 

The production function is estimated in a log-linear form within a lag 

framework. The specification of the empirical panel model is as follows: 

𝐿𝑇𝐹𝑃𝑖𝑡 =∝𝑖+𝛽1∆𝑙𝑛𝐿𝑖𝑡 + 𝛽2∆𝑙𝑛𝐾𝑖𝑡 + 𝛽3∆𝑙𝑛𝑅𝑖𝑡  + 𝛽4∆𝑙𝑛𝐿𝑇𝐹𝑃𝑖𝑡 + 𝑢𝑖𝑡           (2) 

 

R represents real intangible capital. The primary method employed for 

calculating inventory capital (both tangible and intangible) is the Perpetual 

Inventory Method (PIM) as outlined by Meinen et al. (1998). Additionally, the 

Divisia index has been utilized to estimate Total Factor Productivity (TFP), 

referencing the works of Diewert (1993) and Divisia (1925; 1926). 

For measuring TFP in Iran, the Divisia method combined with the Trenquist 

approximation is deemed appropriate, particularly for discrete statistical data. This 

approach is advantageous as it recognizes that the contributions of production 

factors vary across different activities and can change annually, while also 

accounting for variations in the quality of these production factors. 

In this study, a production function has been employed to calculate TFP, 

where output Y is expressed as a function of three inputs: labor LL, physical 

capital inventory K, and intangible capital inventory II. The formula used for 

calculating TFP is as follows: 

𝑇𝐹𝑃 =
𝑌𝑡

𝐾𝑡
∝ 𝐿𝑡   

𝛽 
𝐼𝑡
1−∝−𝛽                                                                                            (10) 

In this context, Y denotes the output value, K represents the value of 

investment services, L indicates the number of employees, and I corresponds to 

the value of intangible investments. The parameter β is defined as the ratio of 

employee compensation to total production, while the production elasticity of 

intangible investment is determined by dividing the payments made for intangible 

investments by the overall output. The parameter α is calculated by taking the 

difference between the two aforementioned ratios. 
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In Equation 9, the variables for physical investment inventory and intangible 

investment inventory are treated as independent factors contributing to the 

productivity of total production factors. To compute these inventories, the 

accumulation data for both physical and intangible investments is derived using 

the following formula: 

𝐼𝑁𝑇𝑖𝑡 = (1 − 𝛿𝑖 )𝐼𝑁𝑇𝑖𝑡−1 +
𝑖𝑛𝑡𝑎𝑛𝑔𝑖𝑏𝑙𝑒𝑖𝑡

𝑃𝑡
                                                                                                          (3) 

In this framework, INTit  represents the accumulated intangible investment 

for the four-digit economic activity classification code ii at time t. The 

variable t signifies the intangible investment for the respective classification code 

of the four-digit economic activity rank ii at time t. Numerous studies have 

explored methodologies for calculating the depreciation rate of intangible assets. 

For this research, we have utilized the approach proposed by Amini (2008), which 

varies for each classification code . 

 

Appendix B 

A more elaborate model is divided into two components: the upstream 

segment, which focuses on the segmentation of knowledge generation into 

innovation, and the downstream segment, which involves transforming knowledge 

into tangible production. The upstream segment is characterized by the 

incorporation of fresh ideas and innovations, represented by Nt. Conversely, the 

downstream production segment leverages the accumulated experience of business 

knowledge for its output. In this context, the downstream segment effectively 

"leases" knowledge, denoted as R. Each component features a production 

possibilities frontier based on Jorgenson (1966) and includes a flow equation that 

ensures revenues are sufficient to cover expenses, which we will examine later 

under conditions of imperfect competition. 

Let: L = Labor , I = Investment (into new tangible capital),K = Tangible 

capital stock,PL and PK = market prices for the services provided by labor and 

capital in a competitive environment, respectively. 

 

Stock Evolution 

According to the net stock equations, the accumulation of intangible assets 

progresses as follows: 

∆𝑅 = 𝑁 − 𝛿𝑅𝑅𝑡−1                                                                                (4) 

And the stock of tangible capital is expressed as: 

∆𝐾 =  𝐼 − 𝛿𝑅𝐾𝑡−1                                                                                             (5) 

We define X as a combination of   L and  K, while σX and σR represent 

payments for the use of inputs X and R expressed as a proportion of the overall 

value generated. A signifies a change in the production function, representing an 

amalgamation of external technological advancements and genuine knowledge 
spillovers (i.e., increases in freely available knowledge). du indicates a change in 

the natural logarithm of variable u. 
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Flow Payments and Production Relations 

1. N-Sector Generating Intangible Assets 

The relationship between flow payments and production is described as 

follows: 
𝑃𝑁𝑁 = 𝑃𝑋  𝑋𝑁;𝑑𝑛 = 𝜎𝑋

𝑁  𝑑𝑥𝑁   + 𝑑𝑎𝑁                                                            (6) 

2. Tangibles- Generating I-Sector: 

 The connection between production and flow payments is articulated as 

follows: 

𝑃𝐼 𝐼 = 𝑃𝑋𝑋𝐼    ;   𝑑𝑖 = 𝑑𝑎𝐼 + 𝑑𝑋𝐼𝜎𝑋                
𝑁                                                                                 (7) 

GDP and Growth Accounting with Intangibles as Intermediate Goods 

Imagine a scenario where intangibles are treated as intermediate goods 

utilized by the downstream sector that produces both tangible and intangible goods 

for consumption. In this case, the relevant flow payments account for the total flow 

of new intangibles (PNN), meaning that the value added in this sector is calculated 

by deducting PNN from total sales. 

𝑃𝐶 + 𝑉𝐶  ≡ 𝑃𝐶 𝐶 − 𝑃𝑁  𝑁     ;    𝑑𝑐 = 𝜎𝑋
𝐶𝑑𝑥𝑐 + 𝜎𝑁

𝐶𝑑𝑛𝑐 + 𝑑𝑎𝑐                        (8) 
The overall value added across the economy is derived from the aggregate 

value added of various industries. 

𝑃𝑉 𝑉 ≡ 𝑃𝐶 𝑉𝐶 + 𝑃𝐼𝐼 + 𝑃𝑁𝑁                                                                             (97) 

Hence, GDP can be expressed as: 

𝑃𝑉 𝑉 ≡ 𝐺𝐷𝑃 = 𝑃𝐶 𝐶 + 𝑃𝐼𝐼 ;   𝑑𝑣 =  𝜎𝑋
𝑉  𝑑𝑥 + 𝑑𝑎𝑉                                           (18)           

When Intangibles Are Considered as Capital 

If we consider the upstream intangibles-producing N-sector as producing 

capital, we need to adjust the downstream sector to ensure that it rents the stock of 

intangibles R: 

𝑃𝐶 = 𝑃𝐶 𝐶     ;    𝑑𝑐 = 𝜎𝑋
𝐶𝑑𝑥𝑐 + 𝜎𝑅

𝐶𝑑𝑟𝑐 + 𝑑𝑎𝑐                                                  (10) 

Thus, the total economy-wide value added becomes: 

𝑃𝑄𝑄 ≡ 𝑃𝐶 𝑉𝐶 + 𝑃𝐼𝐼 + 𝑃𝑁  𝑁                                                                           (20) 

Consequently, GDP is now expressed as: 

𝑃𝑄𝑄 ≡ 𝐺𝐷𝑃 = 𝑃𝐶 𝐶 + 𝑃𝐼𝐼 + 𝑃𝑁  𝑁                                                                 (21) 

 

This leads us to the overall output represented by: 

The factors contributing to growth develop in the following manner. When 

intangibles are excluded, the calculated total factor productivity (TFP) can be 

represented as: 

 

 

Changes in Growth in an AI Economy 

The sources of growth evolve as follows. In the absence of intangibles, the 

measured total factor productivity (TFP) is given by: 

𝑑𝑡𝑚
𝑁𝑜𝑛𝑡𝑎𝑛   ≡ 𝑑𝑣 − 𝜎𝑋  

𝑉   𝑑𝑣                                                                                (11) 

This establishes a relationship between dtmNoIntan, da, and the unaccounted 

intangibles, as discussed in earlier sections. 
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Appendix C: GMM 

Given that the dependent variable is positioned as an interval on the right side 

of the equation in the research model, we encounter a dynamic pattern in the panel 

data. The general structure of such a dynamic model in panel data analysis can be 

represented as follows: 

𝑌𝑖𝑡  = 𝛼𝑌𝑖 𝑡−1 + 𝛽𝑋𝑖𝑡 + 𝜇𝑖 + 𝜀𝑖𝑡                                                                (12) 
In this context, Yit represents the dependent variable, while Xit is the  set of 

independent variables that are  also utilized as instrumental variables. The term μi

 denotes the error component associated with the individual sections, and ϵit is the 

error term specific to the i-th section at time t. 

When the dependent variable is expressed as an interval on the right side of 

the equation in a panel data model, ordinary least squares (OLS) estimators become 

unsuitable (Arellano & Bond, 1991). Consequently, it becomes necessary to 

employ the two-stage least squares (2SLS) method introduced by Anderson and 

Hsiao (1981) or the GMM proposed by Arellano and Bond (1991). Matyas & 

Sevestre (2008) note that 2SLS estimation can lead to large variances in the 

coefficients due to challenges in selecting appropriate instruments, resulting in 

estimates that may lack statistical significance. To address this issue, Arellano and 

Bond recommend using the two-stage GMM method, which is formulated through 

the following differential equation: 

 
𝑌𝑖𝑡 − 𝑌𝑖𝑡−1 = 𝛼(𝑌𝑖𝑡−1 − 𝑌𝑖𝑡−2 ) + 𝛽(𝑋𝑖𝑡 − 𝑋𝑖𝑡−1 ) + (ɛ𝑖𝑡 −
ɛ𝑖𝑡−1)                                                                                                               (13) 

 

Initially, differentiation is performed to eliminate the effects associated with the 

sections or μi of the model . In the subsequent stage, the remaining residuals from 

the first stage are utilized to adjust the variance-covariance matrix. This process 

generates what are referred to as instrumental variables, which are essential for 

achieving reliable and impartial estimates (Baltagi, 2008). 

The reliability of the GMM estimator relies on the premise that there is no 

serial correlation in the error terms and instruments. This premise can be analyzed 

through two tests outlined by Arellano and Bond (1991), Arellano and Bover 

(1995), and Blundell & Bond (1998). The first of these is the Sargan test, which 

evaluates the appropriateness of the instruments by looking at predetermined 

constraints. The statistic from the Sargan test, referred to as the J-Statistic, has a 

distribution that corresponds to the degrees of freedom based on the number of 

overidentifying restrictions. 

The second test investigates the potential for second-order serial correlation 

in the error terms that have been first-order differenced, utilizing the M2 statistic 

for this purpose. It is essential for the consistency of the GMM estimator that these 

first-order differenced errors do not exhibit any second-order serial correlation. If 

the null hypothesis for both tests is upheld, it reinforces the assumptions regarding 
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the absence of serial correlation and the appropriateness of the instruments 

employed. 

In this study, the Sargan test was conducted to verify the consistency of the 

GMM estimator. Furthermore, EViews 13 and MATLAB software were employed 

for the statistical and econometric analyses. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 


