Alam, T. M., Fazli, A., Rahman, S., & Choudhury, T. (2020). An investigation of credit card default prediction in the imbalanced datasets. IEEE Access, 8, 201173–201198. https://doi.org/10.1109/ACCESS.2020.3033405.
Aruleba, I. T., & Sun, Y. (2025). An improved ensemble method with data resampling for credit risk prediction. IEEE Access, 13, 71275–71287. https://doi.org/10.1109/ACCESS.2025.XXXXX.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324.
Bulut, C., & Arslan, E. (2024). Comparison of the impact of dimensionality reduction and data splitting on classification performance in credit risk assessment. Artificial Intelligence Review, 57(9), 252.
Chen, T., & Guestrin, C. (2015). XGBoost: Extreme gradient boosting (R package version 0.4-2, Vol. 1, No. 4, pp. 1–4).
Dornadula, V. N., & Geetha, S. (2019). Credit card fraud detection using machine learning algorithms. Procedia Computer Science, 165, 631–641. https://doi.org/10.1016/j.procs.2020.01.077.
Du, P., & Shu, H. (2022). Exploration of financial market credit scoring and risk management and prediction using deep learning and bionic algorithm. Journal of Global Information Management, 30(9), 1–29. https://doi.org/10.4018/JGIM.2022090101.
Emmanuel, I., Sun, Y., & Wang, Z. (2024). A machine learning-based credit risk prediction engine system using a stacked classifier and a filter-based feature selection method. Journal of Big Data, 11(1), 23. https://doi.org/10.1186/s40537-024-xxxx-x.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451.
García, V., Marques, A. I., & Sánchez, J. S. (2012). Improving risk predictions by preprocessing imbalanced credit data. In Neural Information Processing (Vol. 67, pp. 68–75). https://doi.org/10.1007/978-3-642-34711-9_8.
Guo, S., He, H., & Huang, X. (2019). A multi-stage self-adaptive classifier ensemble model with application in credit scoring. IEEE Access, 7, 78549–78559. https://doi.org/10.1109/ACCESS.2019.2921383.
Han, J., Pei, J., & Tong, H. (2022). Data mining: Concepts and techniques (4th ed.). Morgan Kaufmann.
Han, W., Gu, X., & Jian, L. (2023). A multi-layer multi-view stacking model for credit risk assessment. Intelligent Data Analysis, 27(5), 1457–1475. https://doi.org/10.3233/IDA-220791.
Khemakhem, S., & Boujelbene, Y. (2018). Predicting credit risk on the basis of financial and non-financial variables and data mining. Review of Accounting and Finance, 17(3), 316–340. https://doi.org/10.1108/RAF-07-2017-0108.
Kunapuli, G. (2023). Ensemble methods for machine learning. Simon & Schuster.
Liu, J., Liu, J., Wu, C., & Wang, S. (2024). Enhancing credit risk prediction based on ensemble tree-based feature transformation and logistic regression. Journal of Forecasting, 43(2), 429–455. https://doi.org/10.1002/for.XXXX.
Moradi, S., & Mokhatab, R. F. (2019). A dynamic credit risk assessment model with data mining techniques: Evidence from Iranian banks. Financial Innovation, 5(1), 15. https://doi.org/10.1186/s40854-019-0135-0.
Noriega, J., Rivera, L. A., & Herrera, J. (2023). Machine learning for credit risk prediction: A systematic literature review. Data, 8(11), 169. https://doi.org/10.3390/data8110169.
Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1), 37–63.
Quan, J., & Sun, X. (2024). Credit risk assessment using the factorization machine model with feature interactions. Humanities and Social Sciences Communications, 11(1), 1–10. https://doi.org/10.1057/s41599-024-xxxx-x.
Rehman, Z. U., Muhammad, N., Sarwar, B., & Raz, M. A. (2019). Impact of risk management strategies on the credit risk faced by commercial banks of Balochistan. Financial Innovation, 5(1), 44. https://doi.org/10.1186/s40854-019-0142-1.
Religia, Y., Pranoto, G. T., & Santosa, E. D. (2020). South German credit data classification using random forest algorithm to predict bank credit receipts. JISA (Jurnal Inform dan Sains), 3(2), 62–66.
Veeramanikandan, V., & Jeyakarthic, M. (2021). Parameter-tuned deep learning model for credit risk assessment and scoring applications. Recent Advances in Computer Science and Communications, 14(9), 2958–2968. https://doi.org/10.2174/2356607514666210526141120.
Wei, Y., Kirkulak-Uludag, B., Zhu, D., & Luo, X. (2023). Stacking ensemble method for personal credit risk assessment in P2P lending. SSRN. https://doi.org/10.2139/ssrn.4318348.
Wu, C., Gao, D., & Xu, S. (2021). A credit risk predicting hybrid model based on deep learning technology. International Journal of Machine Learning and Computing, 11(3). https://doi.org/10.18178/ijmlc.2021.11.3.xxx.
Zhao, Z., & Aumeboonsuke, V. (2023). Imbalanced credit risk prediction in ensemble learning classifiers: A comparative analysis of SMOTE, ADASYN, SMOTETomek, and cluster centroids. Journal of Arts Management, 7(3), 959–984.
Zou, Y., & Gao, C. (2022). Extreme learning machine enhanced gradient boosting for credit scoring. Algorithms, 15(5), 149. https://doi.org/10.3390/a15050149.