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This study develops a novel, fully unsupervised, data-driven 

typology of national sustainability pathways to identify distinct 

development trajectories and to position Iran within a global 

comparative context. The methodological framework combines K-

means clustering optimized by the silhouette score, t-SNE 

visualization for high-dimensional pattern recognition, and 

hierarchical clustering for robustness validation, providing an 

objective basis for cross-country sustainability assessment.The 

analysis relies on five key indicators—GDP per capita, CO₂ 

emissions per capita, renewable energy share, energy intensity, and 

the Human Development Index (HDI)—for 19 selected countries 

over the 2021–2025 period. This multidimensional approach 

captures core economic, environmental, and social dimensions of 

sustainable development.The results identify four distinct 

sustainability pathways. Iran is clustered with fossil fuel–dependent 

emerging economies, including China, India, Turkey, Malaysia, and 

Thailand. Within this group, Iran shows the lowest renewable energy 

share (1.1%) and the highest energy intensity, placing it on the most 

fossil-fuel-locked trajectory in the sample. In contrast, benchmark 

countries such as Sweden achieve renewable energy shares above 

60%, revealing a substantial sustainability gap.These findings 

provide policymakers with a clear benchmarking tool and highlight 

three priorities for Iran: expanding renewable energy investment, 

reforming fossil-fuel subsidies, and modernizing energy 

infrastructure to support a sustainable growth path. 
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1. Introduction  

Sustainable development has become a fundamental pillar of contemporary 

economic progress, particularly for countries facing structural constraints and 
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ecological pressures. In the case of Iran, long-standing dependence on hydrocarbon 

revenues, high energy intensity, limited penetration of renewables, water scarcity, 

and growing climate-driven risks have weakened economic diversification and 

constrained improvements in human development outcomes. These structural 

vulnerabilities are further amplified by sanctions, regional instability, 

environmental degradation, and seasonal energy shortages, illustrating the urgency 

of institutional reforms and coordinated policies aligned with the Sustainable 

Development Goals. 

The phenomenon under study—cross-country sustainability performance and 

Iran’s relative position within it—has been widely examined through descriptive 

assessments and econometric evaluations. 

 Existing research provides valuable insights into macroeconomic exposure, 

environmental degradation, and SDG progress; however, it remains limited in its 

capacity to reveal deeper structural similarities across nations or to identify strategic 

reference groups that could inform policy benchmarking.  

What remains insufficiently explored is a systematic methodology that 

classifies countries based on multidimensional sustainability indicators using 

advanced data-driven techniques rather than predefined regional or income-based 

categorizations. This gap restricts the development of actionable pathways for 

countries seeking targeted policy learning and evidence-based transition strategies. 

To address this research gap, the present study applies an unsupervised 

machine-learning framework combining K-Means clustering with t-SNE 

dimensionality reduction to analyze sustainability and socio-economic indicators 

across 19 countries from 2021 to 2025. The optimal clustering structure is validated 

using silhouette scores, enabling a robust classification that highlights structural 

patterns and positions Iran relative to high-performing countries such as Sweden. 

This approach provides more than a comparative ranking; it offers a diagnostic tool 

that uncovers the underlying dimensions shaping sustainability trajectories. 

The expected contribution of this study lies in generating new empirical 

insights into how countries align along environmental, social, and economic 

dimensions of sustainable development, while simultaneously providing a strategic 

analytical framework for policy design. By integrating machine learning with 

sustainability assessment, the research advances a predictive, evidence-based tool 

that can support long-term planning, inform low-carbon transition policies, and 

enhance the capacity of countries like Iran to pursue resilient and competitive 

development pathways. 

This paper makes two distinct contributions. First, it develops the first fully 

unsupervised, machine-learning-based typology of sustainable development 

pathways using K-means clustering (silhouette-optimized), t-SNE visualization, 

and hierarchical clustering validation on five core indicators (2021–2025). Second, 

it provides the first rigorous placement of Iran within a global, data-driven 

sustainability typology — showing that Iran follows the most extreme fossil-fuel-

dependent trajectory in the entire sample. These findings offer policymakers a clear 

benchmarking tool and actionable policy priorities. 
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2. Literature Review: Economic Sustainable Development  

2.1 Historical Evolution of the Sustainable Development Concept 

Sustainable development has taken shape over time through a sequence of key 

theoretical debates and policy interventions. Early discussions trace back to 

Malthus (1798), who highlighted the tension between population growth and 

limited natural resources. Concerns about long-term resource scarcity and 

environmental pressures resurfaced in the twentieth century. The most influential 

example was the Club of Rome’s “Limits to Growth” report (Meadows et al., 1972). 

Using systems modeling, it warned that unchecked economic expansion could 

destabilize the global ecological balance. 

A decisive turning point occurred with the publication of the Brundtland 

Report in 1987, which framed sustainable development around intergenerational 

responsibility—emphasizing present needs without undermining those of the 

future.This formulation integrated economic growth, social well-being, and 

environmental protection into a single framework, shaping all subsequent 

discussions on sustainability. 

The Rio Earth Summit in 1992 further institutionalized the concept through 

Agenda 21, emphasizing global cooperation on environmental governance and 

sustainable policy-making. Later, the Millennium Development Goals (MDGs) for 

2000–2015 introduced measurable global targets focusing on poverty, education, 

health, and environmental sustainability. Building on these efforts, the Sustainable 

Development Goals (SDGs) 2015–2030 expanded the agenda to 17 goals and 169 

targets, capturing the multidimensional nature of development and acknowledging 

the interconnectedness of economic, social, and environmental systems. 

This progression—from classical resource debates to comprehensive global 

frameworks—highlights the increasing complexity of sustainability challenges. It 

also justifies the move toward data-driven, multidimensional analytical methods 

such as clustering and machine learning, which are better suited to examine the 

intertwined dynamics of modern sustainable development indicators. 

These historical milestones not only shaped global sustainability agendas but 

also highlight the critical role of institutional frameworks and behavioral factors in 

guiding countries toward effective implementation of sustainable development 

policies. Understanding these dynamics is particularly important for countries like 

Iran, where institutional and socio-behavioral factors influence the adoption of 

green technologies and policy compliance. 

 

2.2 Theoretical Foundations of Sustainable Development 

Several theoretical perspectives help contextualize cross-country differences 

in sustainability outcomes and guide the interpretation of empirical findings. 

Among the prominent analytical approaches, the Environmental Kuznets Curve 

(EKC) suggests a non-linear relationship in which environmental pressure initially 

rises with income growth and later declines(U-shape). In early development stages, 

industrial expansion typically increases pollution, but at higher income levels, 
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technological upgrading, structural transformation, and stronger regulations often 

lead to improved environmental outcomes (Grossman & Krueger, 1995). This 

perspective helps explain why high-income nations often cluster into groups with 

lower environmental stress, while resource-dependent or developing economies 

remain in more carbon-intensive clusters. 

A second important perspective is the decoupling hypothesis, which argues 

that economic growth can become increasingly independent from environmental 

degradation due to advances in efficiency, renewable energy deployment, and 

policy reforms (OECD, 2024). Countries that achieve absolute decoupling—

reducing emissions while growing economically—typically demonstrate strong 

investment in technology, environmental governance, and green infrastructure. This 

framework clarifies why nations with slower technological diffusion or dependence 

on fossil-fuel-based growth, such as Iran, remain tightly coupled to environmental 

pressures. 

A third foundational framework is the Technological Innovation Systems 

(TIS) perspective, which emphasizes how innovation capabilities, institutional 

quality, market formation, and knowledge diffusion shape the speed and direction 

of sustainability transitions (Bergek et al., 2008). Strong innovation systems support 

renewable energy adoption, energy efficiency, and industrial upgrading, while 

weak systems hinder progress toward sustainability. This perspective is particularly 

relevant for interpreting Iran’s position, as gaps in innovation capacity, governance 

quality, and technology diffusion help explain its placement within global 

sustainability clusters. 

Together, these theoretical foundations provide a coherent lens for interpreting 

clustering results  

Institutional economics highlights that the quality of governance, property 

rights, and regulatory frameworks strongly shape the ability of nations to achieve 

sustainable development goals (North, 1990; Acemoglu et al., 2005). Meanwhile, 

behavioral economics emphasizes how policy design, social norms, and incentives 

influence environmental decision-making (Thaler & Sunstein, 2008). Integrating 

these perspectives provides a more comprehensive lens to interpret cross-country 

clustering results and to understand why some countries, like Iran, lag in 

sustainability performance. 

These theoretical perspectives directly inform the study's methodological 

choices, guiding the use of clustering and machine learning techniques to identify 

sustainability pathways and position Iran within global clusters. 

 

2.3 Literature  Review 

Research on sustainable economic development began conceptually and 

institutionally in the late 20th century. Brundtland et al. (1987), in the report Our 

Common Future, laid the theoretical foundations of sustainable development as an 

integrated framework reconciling economic growth, social equity, and 

environmental protection. This framework was later institutionalized through 

the Millennium Development Goals (2000) and subsequently the Sustainable 
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Development Goals (2015), forming a multidimensional global policy architecture 

(Sachs, 2015). 

Methodologically, early approaches based on linear models and single-variable 

indicators have gradually given way to multidimensional and computational 

methods. For example, Ahani & Afshar-Kazemi (2021) used eight World Bank 

indicators and clustering techniques to assess Iran's sustainable development status 

from 1996 to 2016, identifying similar countries such as Indonesia, Vietnam, and 

São Tomé and Príncipe. 

Recent advances in computing and data availability have transformed 

sustainability research. Najati, et al. (2022) applied deep learning models to Iran's 

annual time-series data (1970–2018) to predict CO₂ emissions, projecting a rise to 

850–900 million metric tons by 2023 and highlighting the utility of deep learning 

for environmental forecasting. Gholami et al. (2023) demonstrated that a transition 

towards a green economy could significantly enhance Iran's economic 

sustainability. 

In 2024, studies employed more advanced integrative methods. Sayardoost 

Tabrizi et al. (2024) proposed a hybrid Machine Learning and Network DEA 

approach to evaluate Iran's petrochemical supply chain efficiency, showing that 

clustering homogeneous units improved benchmark realism. Moradi et al. 

(2024) used Random Forest regression and K-means clustering to assess urban 

livability in Tehran, revealing distinct resident response patterns and key 

determinants like access to public transport. 

The trend continued in 2025 with studies applying clustering at a global 

scale. Çelik et al. (2025) used K-Means to classify 166 countries based on SDG 

indicators, validating results with Random Forest and SVM models. Chen et al. 

(2025) similarly grouped nations using machine learning and cluster analysis 

according to economic, social, and environmental structures. Khalili et al. 

(2025) analyzed Iran's industrial energy consumption and CO₂ emissions using an 

ARDL model and system dynamics, simulating policy impacts until 2051. Kian 

Poor & Hajian (2025) examined the interplay between Iran's digital economy and 

human development, identifying governance challenges. Emerging literature 

further indicates that unsupervised learning reveals hidden relationships among 

SDGs and regional development patterns (Garcia-Rodriguez et al., 2025). 

Within this evolving methodological context, the present study employs K-

Means clustering alongside t-SNE to map Iran’s position within global 

sustainability pathways. This approach aligns with contemporary computational 

standards and contributes to the expanding field of data-driven sustainability 

analysis. 
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3. Theoretical Framework  

Building on the theoretical perspectives reviewed in Section 2.2, this section 

develops an integrated analytical framework that operationalizes sustainable 

development through SDG-based indicators and unsupervised machine learning 

techniques. 

Sustainable economic development goes beyond the pursuit of economic 

growth; it represents a balanced approach that integrates economic performance, 

social equity, and environmental protection (Sachs, 2015). The concept emphasizes 

policy designs that not only stimulate growth but also mitigate inequality and 

reduce pressures on natural resources (Brundtland et al., 1987). In this context, the 

Sustainable Development Goals (SDGs) serve as standardized global indicators that 

enable cross-country comparison and provide reliable metrics for assessing 

progress toward sustainability (Vinuesa et al., 2020; Chen et al., 2025). 

From an empirical and data-driven perspective, clustering—one of the core 

methods within unsupervised machine learning—enables the grouping of 

economies based on similarities across multidimensional indicators (Jain, 2010). 

Among clustering techniques, the K-Means algorithm is widely employed due to 

its computational efficiency and scalability, particularly in economic datasets, 

facilitating the detection of latent structures and complex sustainability patterns 

(MacQueen, 1967). To enhance visualization of high-dimensional data, 

dimensionality reduction techniques such as t-SNE allow researchers to project 

clusters into two- or three-dimensional spaces, making inter-country structural 

differences visible and interpretable (van der Maaten & Hinton, 2008). 

Despite its advantages, the K-means algorithm has inherent limitations that 

were considered in this study. These include sensitivity to initial centroid 

placement, which can lead to convergence on local minima; potential scale-

dependency, even after normalization, if variables exhibit extreme variances; and 

the assumption of spherical, equally sized clusters, which may not fully capture 

irregularly shaped data distributions (Lloyd, 1982; Rousseeuw, 1987). Potential 

limitations of the clustering method, including sensitivity to initial centroids, scale 

dependency, and the assumption of spherical clusters, were carefully addressed 

through repeated runs, Z-score normalization, and silhouette validation to ensure 

robustness.To mitigate these, the algorithm was run multiple times (10 independent 

executions) with random initializations, selecting the solution with the lowest 

within-cluster sum of squares to reduce initialization bias. Additionally, Z-score 

normalization was applied to address scale differences, and the silhouette score was 

used not only for optimal cluster selection but also as a validation metric to assess 

overall cluster quality and separation, ensuring robustness against assumptions of 

cluster shape. 

Recent empirical studies indicate that countries follow distinct development 

pathways and that data-driven clustering can uncover these trajectories. For 

instance, Celik et al. (2025) demonstrated that clustering algorithms can classify 

countries based on SDG performance and socioeconomic indicators while 

highlighting regional heterogeneity. Similarly, machine learning has been 
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increasingly applied to SDG analyses to help policymakers identify optimal 

pathways and tailored cluster-based development strategies (Gohr et al., 2025). 

In the case of Iran—characterized by heavy reliance on oil revenues and 

exposure to international sanctions—a data-driven approach is crucial to identify 

sustainable development pathways under resource constraints and external shocks. 

Overall, the theoretical foundations of this study rest on three pillars: 

Sustainable Development Theory: Focus on harmonizing economic growth, 

social welfare, and environmental protection (Sachs, 2015; Brundtland et al., 1987). 

Unsupervised Machine Learning Approaches: Application of K-Means and 

t-SNE to detect and visualize development clusters (van der Maaten & Hinton, 

2008; MacQueen, 1967). 

SDG-Based Data Analytics: Leveraging standardized global indicators to 

evaluate cross-country sustainability patterns and policy pathways (Celik et al., 

2025; Chen et al., 2025; Vinuesa et al., 2020). 

This framework underpins the identification of four distinct global 

sustainability pathways and enables the classification of Iran’s development 

position within these clusters, ultimately informing evidence-based policymaking 

for a low-carbon, resilient, and efficient economic transition. 

 

4. Methodology 

This study adopts a quantitative, descriptive–analytical design to identify 

sustainable development pathways among selected countries and assess Iran’s 

position within these trajectories. The use of unsupervised machine learning enables 

pattern recognition directly from data—without reliance on predefined 

hypotheses—allowing the analysis to reflect empirical conditions rather than 

theoretical assumptions. 

The sample consists of 19 countries purposefully selected to ensure 

representativeness across diverse economic structures, development levels, 

geographical regions, and sustainability profiles, while prioritizing data availability 

to minimize missing values and enhance analytical reliability. Criteria for selection 

included: 

 (1) Economic classification: Drawing from World Bank income groups, the 

sample incorporates high-income economies (e.g., United States, Germany, France, 

Sweden, United Kingdom, Japan, Netherlands, Italy, Spain, South Korea), upper-

middle-income economies (e.g., China, Turkey, Malaysia, Thailand, Saudi Arabia, 

United Arab Emirates), and lower-middle-income economies (e.g., India, Iran) to 

capture a spectrum of development stages and resource dependencies. 

 (2) Geographical diversity: Countries were chosen from multiple regions, 

including North America (United States), Europe (Germany, France, Netherlands, 

Italy, Spain, United Kingdom, Sweden), Asia (China, India, Japan, South Korea, 

Turkey, Malaysia, Thailand), and the Middle East (Iran, Saudi Arabia, United Arab 

Emirates), to reflect global variations in environmental challenges, policy contexts, 

and energy systems. 
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 (3) Sustainability and energy profiles: The selection emphasizes a mix of 

fossil fuel-dependent nations (e.g., Iran, Saudi Arabia), renewable energy leaders 

(e.g., Sweden), and transitional economies (e.g., China, India) to enable meaningful 

clustering and benchmarking.  

(4) Data availability: Only countries with complete or near-complete time-

series data (less than 5% missing values) for all five indicators (GDP per capita, 

CO₂ emissions per capita, renewable energy share, energy intensity, and HDI) from 

2021–2025, sourced from reliable databases (UNDP, World Bank, IEA, Our World 

in Data), were included to ensure robustness and avoid imputation biases beyond 

minimal levels. This non-random, purposive sampling strategy aligns with prior 

international sustainability studies (Çelik et al., 2025; Chen et al., 2025) that use 

similar cross-sectional designs to explore multidimensional patterns. By focusing 

on variation rather than exhaustive coverage, the sample mitigates selection bias 

while providing a balanced framework for identifying structural similarities and 

differences in sustainable development pathways, with Iran as a focal case for 

comparative analysis. 

The dataset includes key environmental, economic, and energy indicators 

covering the 2010–2025 period. GDP per capita and the Human Development Index 

(HDI) were sourced from UNDP and the World Bank. Carbon dioxide emissions 

per capita and energy intensity were obtained from the International Energy Agency 

(IEA) and Our World in Data. The share of renewable energy consumption was 

retrieved from databases published by the IEA and the World Bank (2024). All 

variables were collected as annual time series, with data for 2024–2025 consisting 

of projections from established reports and models to ensure forward-looking 

analysis. Specifically, these projections are derived from: the World Bank's Global 

Economic Prospects for GDP per capita; UNDP's Human Development Report 

(2025) for HDI; IEA's World Energy Outlook (2025c) and Global Energy Review 

(2025a) for CO₂ emissions per capita and energy intensity; and IEA/IRENA 

databases (Renewable Energy Statistics 2025) for renewable energy share. These 

sources use econometric modeling, scenario-based forecasting (e.g., under current 

policies or stated policies scenarios), and trend extrapolation based on historical 

data up to 2023–2024, incorporating assumptions on economic growth, policy 

changes, and technological trends. Five-year averages (2021–2025) were computed 

to smooth short-term fluctuations, mitigate noise associated with pandemic-era 

shocks, and reflect persistent structural trends. 
Table 1.  Key Variables Influencing Sustainable Development  

Variable Unit Description 

GDP_pc USD Gross domestic product per capita 

CO2_pc Metric tons Carbon dioxide emissions per capita 

Renewable_share Percent (%) 
Share of renewable energy consumption in total 

energy use 

Energy_Intensity 
Energy unit per 

GDP 
Energy consumption per unit of economic output 

HDI 0–1 scale Human Development Index 
Source: Author’s research  
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Data preprocessing was a crucial step to ensure reliability, internal 

consistency, and model readiness of the dataset. All variables were compiled as 

annual time series and then transformed into five-year averages to smooth short-

term fluctuations and reduce the influence of temporary shocks. Missing 

observations—affecting less than 5% of the dataset—were imputed using the mean 

of adjacent years to preserve temporal continuity while avoiding artificial bias. 

Given that the variables operate on heterogeneous scales (for example, GDP 

per capita measured in thousands of USD compared to HDI measured on a bounded 

0–1 scale), standardization was necessary before applying the clustering algorithm. 

The Z-score normalization method was employed to ensure comparability across 

indicators and to prevent variables with large numerical ranges from dominating 

the distance metrics in K-Means classification. 

The Z-score transformation is defined as follows: 

𝒁𝒊𝒋 =
𝑿𝒊𝒋  −𝝁𝒋

𝝈𝒋
                                                                                (1) 

Expanding on the standardization procedure, let 𝑋𝑖𝑗  denote the value of 

variable j for country i, 𝜇𝑗,represent the sample mean of variable j , and 𝜎𝑗denote 

its standard deviation. This transformation places all variables on a uniform scale 

and eliminates distortions caused by differing measurement units—such as USD 

versus metric tons of CO₂ emissions—ensuring that no variable disproportionately 

influences the clustering outcome. 

To identify the most appropriate number of clusters (k), the Silhouette Score 

criterion was employed. This metric evaluates clustering quality by comparing 

intra-cluster cohesion with inter-cluster separation, making it particularly useful 

when no prior theoretical assumption exists regarding cluster structure. The 

Silhouette Score for each observation i is defined as: 

𝒔(𝒊) =
𝒃(𝒊)−𝒂(𝒊)

𝒎𝒂𝒙 (𝒂(𝒊),𝒃(𝒊))
                                                                                          (2) 

Continuing the clustering procedure, a(i) represents the average intra-cluster 

distance for observation i, capturing cohesion, while b(i) denotes the average 

distance from iii to the nearest alternative cluster, capturing separation. Values close 

to +1 indicate strong cluster separation and internal consistency, values near 0 

suggest weak boundaries, and negative values imply cluster overlap and potential 

misclassification. By computing the Silhouette Score for values of k ranging from 

2 to 10, the maximum score—approximately 0.40—was obtained at k=4, which 

was found to best represent the underlying cluster structure. 

The final clustering was performed using the K-Means algorithm, one of the 

most widely used and computationally efficient unsupervised learning techniques 

for partitioning multivariate data into distinct groups based on similarity patterns. 

The algorithm repeatedly reallocates observations across groups with the aim of 

reducing overall dispersion within clusters, measured by the sum of squared 

distances. Accordingly, the optimization problem seeks to: 
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𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ ∑ ∥ 𝑋𝑖𝑖∈𝐶𝑗

𝑘
𝑗=1 − 𝜇𝑗 ∥2                                                                                   (3) 

 

In this formulation, k denotes the number of clusters, 𝐶𝑗 represents the set of 

countries assigned to cluster j, 𝑋𝑖 is the feature vector for country i, and 𝜇𝑗 refers to 

the cluster centroid, computed as the mean vector of observations within each 

cluster. The algorithm begins by randomly initializing centroid positions, followed 

by iterative assignment of countries to the nearest centroid based on Euclidean 

distance. After each assignment step, centroids are recalculated until convergence 

is achieved. 

In this study, convergence was defined as either reaching a maximum of 300 

iterations or achieving a centroid shift below a tolerance threshold of 0.0001, 

ensuring both computational efficiency and numerical stability. To mitigate the risk 

of converging to suboptimal local minima—given that K-Means is sensitive to 

initial centroid placement—the algorithm was executed multiple times (10 

independent runs), and the optimal solution was selected based on the lowest 

within-cluster sum of squares. 

To visualize the complex relationships across countries and their 

corresponding clusters, the t-Distributed Stochastic Neighbor Embedding (t-SNE) 

algorithm was employed as a nonlinear dimensionality-reduction method that 

projects high-dimensional data into a two- or three-dimensional feature space. The 

technique preserves local neighborhood structure by modeling pairwise similarities 

in the high-dimensional space and reconstructing them in the reduced space using 

probability distributions based on the t-Student kernel. This enables meaningful 

visual interpretation of latent patterns and spatial separation across clusters. 

t-SNE was implemented with a perplexity value of 30, balancing local and 

global structure in the data, and a learning rate of 200, ensuring stable optimization 

of the embedded manifold. The visualization served as a complementary diagnostic 

to validate clustering results and assess structural consistency among countries. 

Following dimensionality reduction, the mean values of all sustainability 

indicators were computed at the cluster level to characterize each developmental 

pathway. Iran’s positioning within the identified clusters was subsequently 

evaluated and compared both to countries with similar development trajectories 

(such as China and India) and to advanced, sustainability-leading economies (such 

as Sweden). This comparative interpretation provides a nuanced understanding of 

Iran’s relative progress and developmental constraints. 

Overall, the methodological framework is data-driven, reproducible, and well-

suited to capturing nonlinear dynamics underlying sustainable development 

outcomes. By moving beyond conventional linear econometric models, this 

approach uncovers emergent global patterns that more accurately reflect the multi-

dimensional nature of sustainability transitions. 

 
5. Findings and Discussion 

Using an unsupervised machine learning approach, the present study clustered 

19 selected countries based on key economic, environmental, and energy indicators 
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over the period 2021–2025. The variables included GDP per capita, CO₂ emissions 

per capita, renewable energy share, energy intensity, and the Human Development 

Index (HDI). After standardizing all variables, the K-means algorithm was applied 

with the optimal number of clusters determined to be four, based on the Silhouette 

Score criterion. 

The clustering results reveal four distinct groups of countries, each reflecting 

a unique developmental trajectory that integrates economic performance and 

environmental sustainability. Determining the preferred cluster count through the 

Silhouette Score ensures methodological rigor by replacing subjective assumptions 

with a quantitative selection process. As shown in Figure 1, the Silhouette Score 

reaches its maximum value at k = 4, confirming high inter-cluster separation and 

internal cohesion at this configuration. 

 

  
Figure 1. presents the Silhouette Score values for different numbers of clusters (k), 

illustrating why four clusters provide the most robust and interpretable grouping 

structure for the dataset. 
Source: Author’s calculations 

 

The final clustering results, obtained through the K-means algorithm and 

visualized using the t-SNE technique, are presented in Figure 2. This visualization 

clearly identifies four distinct groups of countries in a two-dimensional space, each 

representing a unique economic-environmental development pathway. The relative 

positions of the countries in this embedded space reveal both fundamental 

similarities within clusters and substantial differences across clusters, highlighting 

diverse trajectories toward sustainable development. 
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Figure 2. Country clustering using t-SNE and K-means. 

Source: Author’s calculations. 

 

To conduct a more detailed analysis of the characteristics of each cluster, the 

mean values of key indicators were calculated for all groups. These results are 

summarized in Table 2, which delineates four distinct development pathways based 

on a combination of economic growth, environmental performance, and human 

development. 

 
Table 1. Average key indicators for each cluster 

Cluster 

GDP per 

capita 

(USD) 

CO₂ per 

capita 

(ton) 

Renewable 

energy share 

(%) 

Energy 

intensity 

Human 

Development Index 

(HDI) 

0 45,716 18.99 6.59 7,531 0.898 

1 47,789 6.73 14.14 3,338 0.942 

2 7,293 6.39 15.15 1,321 0.743 

3 57,133 3.64 61.7 4,850 0.955 
Source: Author’s research  

 
To further interpret the structural differences across the identified pathways, 

the average values of key sustainability indicators were computed for each cluster. 

These aggregated measures reveal distinct developmental profiles: Cluster 0 

represents high-income economies with elevated carbon emissions and strong 

human development; Cluster 1 includes upper-middle-income countries with 

moderate environmental footprints; Cluster 2 consists of lower-income economies 

with limited renewable capacity; and Cluster 3 reflects advanced economies with 

both high income and high renewable energy penetration. 
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Figure 3. Average sustainability and economic indicators across clusters (2021–2025) 

Source: Author’s calculations. 

 

Figure 3 visualizes the cluster-level averages across GDP per capita, CO₂ 

emissions, energy intensity, renewable energy share, and HDI. The results illustrate 

sharp contrasts in energy efficiency and environmental performance. Notably, 

Cluster 3 shows high income levels combined with low carbon intensity, suggesting 

a decoupling pattern, while Cluster 0 maintains high emissions despite strong 

economic output. 

Cluster 0 consists of high-income, high-carbon countries such as Saudi Arabia, 

the United Arab Emirates, the United States, and South Korea. Despite their 

relatively high GDP per capita and Human Development Index (HDI), these 

countries face significant environmental challenges. They exhibit very high average 

CO₂ emissions per capita (around 17 tons) and a very low share of renewable energy 

(approximately 6%). Energy intensity in this group is also extremely high (average 

above 7,300 units), indicating a development pathway that remains heavily reliant 

on fossil fuels and is currently not aligned with sustainable development goals . 

Cluster 1 includes developed European countries such as Germany, France, 

the Netherlands, Italy, Spain, the United Kingdom, and Japan. This group achieves 

a high GDP per capita (around USD 48,000) and a very high HDI (average 0.94) 

while successfully reducing CO₂ emissions per capita (around 6 tons) and 

increasing the share of renewable energy (over 15%). Energy intensity is relatively 

low in this cluster (average around 3,400 units), demonstrating that economic 

growth can coexist with environmental preservation (Sachs, 2015). 

Cluster 2 comprises developing countries including China, India, Turkey, 

Malaysia, Thailand, and Iran. These countries have a relatively low share of 

renewable energy (around 10%) and moderate CO₂ emissions per capita (average 8 

tons). GDP per capita is lower compared to other clusters (around USD 10,000), 

and HDI is at the upper end of the medium-development range (average 0.75). 

Energy intensity is variable but generally higher than in Cluster 1. Iran belongs to 

this cluster, reflecting its position as a developing country heavily dependent on 

fossil fuels. 
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Iran exhibits the lowest renewable energy share within Cluster 2, at 

approximately 1.1%, which is well below the cluster average of about 15% and 

considerably lower than peer countries such as India (35%) and China (16%), as 

well as Turkey (13%), Thailand (12%), and Malaysia (8%). This pattern reflects a 

combination of structural, policy-related, and external factors. Historically, fossil-

fuel subsidies have shaped price signals and investment incentives, while abundant 

domestic oil and gas resources with relatively low extraction costs have limited 

economic motivation for renewable energy adoption (IEA, 2025a; World Bank, 

2024). Moreover, international sanctions have constrained access to renewable 

technologies, project financing, and foreign direct investment in clean energy (IEA, 

2025d). 

A closer comparison within Cluster 2 highlights key differences. Countries 

like China and India have benefited from sustained state-led renewable energy 

programs, technology transfer, and domestic manufacturing development over the 

past 15 years, enabling higher adoption rates. In contrast, Iran’s support frameworks 

for renewables—such as feed-in tariffs and renewable portfolio standards—have 

been introduced relatively recently, which helps explain the slower uptake. 

Examining additional indicators, Iran’s energy intensity (2,950 units) is higher 

than some cluster peers, including Malaysia (1,735 units) and Thailand (1,430 

units), indicating lower efficiency in energy consumption. Per capita CO₂ emissions 

(8.1 tons) are slightly above the Cluster 2 average (8 tons), highlighting 

environmental pressures, while the Human Development Index (HDI) of 0.80 

places Iran at the upper edge of the medium-development group. This suggests the 

presence of human capital and social capacity that could support a faster transition 

toward renewable energy under more favorable policy and investment conditions. 

Overall, this within-cluster analysis underscores the structural and policy-

related barriers that have limited Iran’s renewable energy development, while also 

pointing to potential opportunities for accelerating the transition through targeted 

reforms and strategic investments. 

Cluster 3 consists solely of Sweden, which demonstrates a unique sustainable 

development pathway. With 62.9% of energy derived from renewables, very low 

per capita CO₂ emissions (3.4 tons), and a very high HDI (0.96), Sweden illustrates 

that achieving economic growth alongside substantial reductions in greenhouse gas 

emissions and improvements in human development is feasible (Gohr et al., 2025). 

To verify the stability of the clustering results, we repeated the K-means 

algorithm with k = 3 and k = 5. Iran’s cluster membership remained unchanged, 

confirming the stability of the identified cluster assignments. To validate the 

stability of the K-means results, we performed agglomerative hierarchical 

clustering using Ward’s linkage on the same standardized dataset. The dendrogram 

(Figure 4) confirms a highly similar grouping structure. When cutting the 

dendrogram at four clusters — consistent with the optimal K-means solution — 

Iran remains in the same cluster as China, India, Turkey, Malaysia, and Thailand 

(fossil-fuel-dependent emerging economies).  
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Figure 4. Hierarchical clustering dendrogram (Ward’s linkage, Euclidean distance) of 

the 19 countries based on five standardized sustainability indicators (2021–2025 

average) 
Source: Author’s calculations. 

 

This cluster is characterized by low renewable energy share (average ≈10%), 

moderate-to-high energy intensity, and medium-high HDI. The consistency across 

both parametric (K-means) and non-parametric (hierarchical) methods strengthens 

confidence in the robustness of the identified development pathways and Iran’s 

position therein. 

These findings indicate that Iran is currently on a development trajectory in 

which economic growth is accompanied by increased fossil fuel consumption and 

carbon emissions. This pathway poses environmental, energy security, and 

economic competitiveness challenges. Transitioning toward sustainable 

development will require targeted policies to enhance the share of sustainable 

energy, improve energy efficiency, and reduce carbon intensity. Such measures will 

not only support environmental protection but also enhance Iran’s economic 

competitiveness and guide the country toward a more resilient and sustainable 

development model. These results provide a data-driven foundation for Iranian 

policymakers to design strategies for a low-carbon economy and effective urban 

energy management (Sadabadi et al., 2025; Heidary et al., 2025). 

 

6. Discussion 

The four clusters identified in this study provide empirical validation and 

refinement of several core theoretical frameworks introduced in Section 2. 

Cluster 0 (Saudi Arabia, UAE, United States, South Korea) represents a high-

income, high-carbon pathway that directly confirms the persistence of fossil-fuel 

lock-in even at very high income levels, challenging the classic Environmental 
Kuznets Curve (EKC) expectation of an automatic turning point after a certain 

income threshold (Grossman & Krueger, 1995). This finding aligns perfectly with 
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Sachs’ (2015) warning that natural resource abundance and rent-seeking behaviour 

can perpetuate carbon-intensive growth regimes indefinitely, and extends the 

analysis of petro-states to non-Middle Eastern cases such as South Korea and the 

United States. 

Cluster 1 (Western Europe + Japan) and the singleton Cluster 3 (Sweden) 

together provide strong empirical support for absolute decoupling and the 

downward-sloping portion of the EKC. These economies have achieved high or 

very high GDP per capita while steadily reducing per-capita CO₂ emissions and 

dramatically increasing renewable energy shares — exactly the pattern predicted 

by the decoupling hypothesis (OECD, 2024) and illustrated by Sachs (2015) in The 

Age of Sustainable Development. Sweden’s unique position as a single-country 

cluster further validates Gohr et al.’s (2025) argument that strong innovation 

systems, absence of fossil-fuel subsidies, and long-term policy coherence can 

produce near-complete alignment between economic prosperity and environmental 

sustainability. 

Cluster 2, which includes Iran alongside China, India, Turkey, Malaysia, and 

Thailand, provides a nuanced perspective on the standard Environmental Kuznets 

Curve (EKC) narrative. While countries in this group continue to exhibit a strong 

linkage between economic activity and fossil fuel use, Iran displays a comparatively 

lower share of renewable energy (approximately 1.1%). This pattern suggests that 

factors such as long-standing energy subsidies, abundant domestic hydrocarbon 

resources, and prolonged international sanctions may contribute to a slower 

transition toward cleaner energy sources, potentially delaying the EKC turning 

point (Khalili et al., 2025; World Bank, 2024). In contrast, the more rapid expansion 

of renewable energy capacity in China and India underscores the importance of 

sustained industrial policy support and access to global technology markets in 

shaping energy transition pathways. 

At the domestic level, Iran’s position is broadly consistent with earlier Iranian 

scholarship (Ahani & Afshar-Kazemi, 2021), which highlights the roles of energy 

subsidies, industrial structure, and governance arrangements in shaping 

sustainability outcomes. The clustering results place these country-specific factors 

within a broader comparative framework, indicating that Iran follows a distinct 

developmental pattern within the group of emerging economies, rather than simply 

reflecting a uniform delay relative to higher-performing countries. 

Geopolitical constraints further amplify these structural barriers. Prolonged 

sanctions have restricted access to renewable technology, project finance, and 

foreign investment — mechanisms that China and India used aggressively during 

the 2010s. This finding extends the international political economy literature 

showing how external shocks can lock countries into undesirable development 

pathways (Bradshaw, 2014; IEA, 2025d). 

Taken together, the clustering results move beyond description to actively 

confirm the EKC and decoupling theories for advanced economies, refine them for 

resource-rich and sanctioned middle-income countries, and underscore the pivotal 

role of policy choice, institutional quality, and geopolitical context in determining 
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sustainability transitions — precisely the synthesis called for by Sachs (2015) and 

the OECD decoupling framework. 

 

7. Concluding Remarks and Policy Recommendations 

This study applied unsupervised machine learning to examine the 

sustainability trajectories of selected countries and to identify Iran’s relative 

position within these global patterns. By integrating K-means clustering with t-SNE 

dimensionality reduction, the research provided a multidimensional perspective on 

economic performance, environmental outcomes, and human development. The 

results show that Iran currently follows a development pathway characterized by 

high energy intensity, limited renewable energy adoption, and medium levels of 

human development. This combination reflects a long-standing dependence on 

fossil fuels and a set of institutional, technological, and policy barriers that restrict 

progress toward a low-carbon, resilient, and competitive development model. 

The analysis highlights the structural nature of the sustainability challenges 

facing the country. Factors such as coordination across institutions, the pace of 

digitalization in the energy sector, and the scope of renewable energy strategies 

appear to influence the speed of progress. Consistent with the international 

literature, the findings suggest that effective energy transitions are typically 

associated with sustained policy alignment, technological capability, and 

integration into global innovation networks. Geopolitical constraints may also 

shape the extent to which countries can access new technologies, diversify energy 

sources, and modernize infrastructure. Taken together, these dynamics help explain 

differences in sustainability performance between Iran and higher-performing 

economies over time. 

Like any empirical investigation, this study is subject to limitations. The scope 

of countries included in the sample and the reliance on five-year averages may 

conceal short-term variations or reforms that occurred during the period. The 

clustering approach, while powerful, cannot fully capture institutional dimensions 

such as governance quality, innovation capacity, or policy coherence, which are 

increasingly central to sustainable development. Future research that incorporates 

governance indicators, broader SDG dimensions, or dynamic clustering methods 

could deepen understanding of the complex mechanisms driving sustainability 

differences across countries. 

Despite these limitations, the results offer relevant insights for development 

strategy. Moving toward a more sustainable trajectory may benefit from a longer-

term focus on expanding renewable energy capacity, upgrading energy 

infrastructure, and enhancing institutional coordination. Gradual adjustments to 

energy pricing and support mechanisms, alongside greater emphasis on clean 

technologies, could support innovation and economic resilience. In addition, 

continued progress in energy-sector digitalization, smart grid deployment, and 

research and development in energy technologies may help reduce existing gaps 

with higher-performing economies. Developing an integrated framework for 

monitoring sustainability outcomes  could further assist policymakers in 
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formulating informed and adaptive policy responses to economic, environmental, 

and climate-related challenges. 

In moving toward sustainability, Iran stands at a critical juncture. The 

clustering results show that substantial opportunities exist to shift from a fossil-fuel-

dependent trajectory toward a more resilient, technologically dynamic, and 

environmentally responsible development model. With coherent policies, targeted 

investments, and strengthened institutional capacity, Iran can gradually converge 

with the sustainability pathways of high-performing economies while improving 

long-term economic security and societal well-being. 
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