نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اقتصاد، دانشگاه علوم دریایی، چابهار،ایران

2 گروه اقتصاد، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

چکیده

انرژی در جوامع در حال توسعه نقش مهمی دارد. نقش تقاضای انرژی در تصمیم گیری و سیاست گذاری بر تولید، توزیع و عرضه آن و اهمیت حیاتی انرژی، به ویژه سوخت های فسیلی، یک عامل موثر بر تولید کشاورزی است. این عامل تأثیر زیادی بر تولید محصولات کشاورزی در ایران دارد. پیش بینی مصرف محصولات نفتی توسط بخش کشاورزی می تواند به مدیران و برنامه ریزان کمک کند تا شیوه های مدیریت مناسب برای مصرف خود را به کار گیرند. در حال حاضر شبکه های عصبی مصنوعی به عنوان یک ابزار قدرتمند برای تحلیل و مدل سازی روابط غیر خطی در نظر گرفته می شوند. در این تحقیق، شبکه های عصبی مصنوعی GMDH و RBF به منظور تخمین مصرف محصولات نفتی توسط بخش کشاورزی مورد استفاده قرار گرفت. پارامترهای پایه ای شامل ارزش افزوده به قیمت ثابت، جمعیت روستایی، مساحت زمین های کشاورزی، مکانیزاسیون کشاورزی (تراکتور) و میزان مصرف محصولات نفتی، برق، قیمت محصولات نفتی و مصرف انرژی کل کشاورزی بخش برای دوره 1967-2017 انتخاب شدند. مقایسه MSE، MAE و MAPE برای مدلهای GMDH و RBF نشان داد که شبکه عصبی GMDH توانایی بالایی در مدل کردن مصرف انرژی بخش کشاورزی دارد.

کلیدواژه‌ها

References
 
Abbasi, E. (2015). Prediction of energy consumption by the agricultural sector of Iran. Quarterly Journal of Financial Economics, 9 (32), 81-102. (In Persian)
Alam, M. S., Alam, M. R. & Islam, K. K. (2005). Energy flow in agriculture: Bangladesh, American Journal of Environmental Science, vol. 3, 213-220.
Atashkari, K., Nariman-Zadeh, N., Gölcü, M., Khalkhali, A. & Jamali, A. (2007) Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms; Energy Conversion and Management, Vol. 48, Issue 3, 1029-1041.
Barthelmie, R. J., Murray, F., & Pryor, S. C. (2008). The economic benefit of short-term forecasting for wind energy in the UK electricity market. Energy Policy36(5), 1687-1696.
Ebrahimi, M. (2012). Use of artificial neural network (ANN) and time series approach for prediction of electricity consumption in agricultural sector. Journal of Agricultural Economics Research, 4 (13), 27-42. (In Persian with English Abstract)
Ghasemi, A. (2012). An overview of the evolution of energy economy indicators in the agricultural sector, the monthly review of issues and economic policies, 3: 169-184. (In Persian)
Haykin, S. (1999). Neural networks: a comprehensive foundation, Prentice Hall, New Jersey, USA.
Ivakhnenko, A. G., & Muller J. A. (1995). Present state and new problems of further GMDH development,System Analysis Modeling and Simulation; (SAMS), Vol. 20, No. 1-2, 3-16.
Ivakhnenko, A. G., & Müller, J. A. (1995). Recent Developments of Self-Organising Modeling in Prediction and Analysis of Stock Market, < https://pdfs.semanticscholar.org/be26/7e3a9c2843cd756a4ef029a295104225ae0c.pdf >
Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power & Energy Systems67, 431-438.
Lee, Y. S., & Tong, L. I. (2012). Forecasting nonlinear time series of energy consumption using a hybrid dynamic model. Applied Energy94, 251-256.
Li, K., & Su, H. (2010). Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system. Energy and buildings42(11), 2070-2076.
Menhaj, M., Kazemi, A., Shakuri Ghanjwari, H., Mehrgan, M., & Taghizadeh, M. (2010). Transport energy demand forecasting using neural networks: Case study Iran. Management Research in Iran, 14 (2), 203-220. (In Persian with English Abstract)
Mousavi, S., Mokhtari, Z., & Farajpour, Z. (2010). Prediction of energy carriers consumption rate by the agricultural sector of Iran: The application of ARCH and ARIMA models. Quarterly Journal of Energy Economics Review, 7 (27), 181-195. (In Persian)
Nelles, O. (2001). Nonlinear system identification, Springer Verlag, Berlin.
Pukšec, T., Krajačić, G., Lulić, Z., Mathiesen, B. V., & Duić, N. (2013). Forecasting long-term energy demand of Croatian transport sector. Energy57, 169-176.
Sadeghi, H., Afzalian, A., Haghani, M., &Sohrabivafa, H. (2013). Forecasting the long run electricity demand using hybrid PSO-ANFIS algorithm. Journal of Economic Modeling Research, 3 (10), 21-56. (In Persian with English Abstract)
Sardar Shahraki, A. (2017). Optimal allocation of Hearmand's water resources resources using game theory and evaluation of management scenarios. PhD Thesis, Agricultural Economics University of Sistan and Baluchestan, Zahedan, Iran
Taghizadeh Mehrjerdi, R., Fatahi Ardakani, A., Tahari, M.H., & Babaie, H. (2015). Prediction of Iran's agricultural energy consumption using the combined model of genetic algorithm and artificial neural networks, Agricultural Economics Research, 3: 149-166. (In Persian)
Taheri, F., & Mousavi, S. (2010). Analyzing the role of energy in the Iranian agricultural sector. Journal of Agricultural Economics Research, 2 (6), 45-60. (In Persian with English Abstract)
Wang, X.,Li, K.,Li, H.,Bai, D., & Liu, J. (2017). Research on China’s rural household energy consumption–Household investigation of typical counties in 8 economic zones. Renewable and Sustainable Energy Reviews68, 28-32.