Investigating Role of Uncertainty and Asymmetric Information on Relationship Between Intrinsic and Market Value of Stock Price

Document Type : Research Paper

Authors

Department of Accounting and Economics, University of Hormozgan, Bandar Abbas, Iran

Abstract

Price is known to be a very important indicator for evaluating the performance of firms in the stock market. This study aims to investigate the role of uncertainty and asymmetric information as the main variables influencing the stock price fluctuations on the intrinsic value and market price relationship of firms active in the Tehran Stock Exchange during 2013-2022.The present study attempts to investigate relationship of stock price and mentioned variables in firms active in the Tehran Stock Exchange by modelling the relationship between the stock price and mentioned variables. The results indicate that asymmetric information has a positive and significant effect on the relationship between stock intrinsic price and market price in firms active in Tehran Stock Exchange. Furthermore, the variables relevant to firm performance and economic significantly impact the firm's stock prices. Earnings per share, expected return on risk and economic growth rate have a positive effect and financial leverage, inflation and exchange rate have a negative effect on the stock prices. Overall, the study underscores that uncertainty, asymmetric information, and both firm-specific and economic factors play a pivotal role in explaining fluctuations in stock prices, providing a valuable framework for understanding market behavior in the context of an emerging economy. From a practical standpoint, these findings emphasis the necessity for policymakers and market regulators to enhance transparency and information quality, thereby reducing asymmetric information and fostering investor confidence.

Keywords

Main Subjects


Article Title [Persian]

بررسی نقش عدم اطمینان و اطلاعات نامتقارن بر رابطه قیمت ذاتی-بازاریِ سهام شرکت‌ها

Authors [Persian]

  • مصطفی شمس الدینی
  • حسین نورانی
گروه حسابداری و اقتصاد، دانشگاه هرمزگان، بندرعباس، ایران.
Abstract [Persian]

قیمت یکی از مهم‌ترین شاخص‌های ارزیابی عملکرد شرکت‌ها در بازار اوراق بهادار است؛ هدف پژوهش حاضر بررسی نقش عدم اطمینان و عدم تقارن اطلاعات به عنوان متغیرهای اصلی اثرگذار بر نوسان قیمت سهام در رابطه‌ی بین قیمت ذاتی و قیمت بازاری سهام شرکت‌های فعال در بورس اوراق بهادار تهران طی دوره 1392 تا 1401 است. در این مطالعه سعی شده تا با مدل‌سازی رابطه قیمت ذاتی و قیمت بازاری سهام تحت شرایط وجود عدم اطمینان و عدم تقارن اطلاعات، رابطه قیمت سهام با متغیرهای مذکور در شرکت‏های فعال در بورس اوراق بهادار تهران مورد بررسی قرار گیرد. یافته‏ها نشان می‌دهد که عدم تقارن اطلاعات بر رابطه قیمت ذاتی-بازاریِ سهام شرکت‌های فعال در بورس اوراق بهادار تهران تأثیر مثبت و معنی‌دار دارد؛ همچنین متغیرهای مرتبط با عملکرد شرکت و شرایط اقتصادی بر قیمت سهام شرکت‌ها تأثیر معنی‌دار دارد؛ درآمد هر سهم، بازده انتظاری به ریسک و نرخ رشد اقتصادی اثر مثبت و اهرم مالی، نرخ تورم و نرخ ارز اثر منفی بر قیمت سهام شرکت‌های مورد بررسی دارد. به طور کلی، این مطالعه تاکید می‌کند که عدم قطعیت، اطلاعات نامتقارن، عوامل خاص شرکت و عوامل اقتصادی نقشی اساسی در توضیح نوسانات قیمت سهام دارند و چارچوبی ارزشمند برای درک رفتار بازار در زمینه اقتصادهای نوظهور ارائه می‌دهند. از منظر عملی، این یافته‌ها بر ضرورت افزایش شفافیت و کیفیت اطلاعات توسط سیاست‌گذاران و تنظیم‌کننده‌های بازار تاکید می‌کند و در نتیجه اطلاعات نامتقارن را کاهش می‌دهد و اعتماد سرمایه‌گذاران را تقویت می‌کند.

Keywords [Persian]

  • قیمت ذاتی
  • قیمت بازاری
  • عدم تقارن اطلاعات
  • عدم اطمینان
Abdeldayem, M. M. (2015). Examining the relationship between agency costs and
stock mispricing: Evidence from the Bahrain stock exchange. International
Journal of Economics, Commerce and Management, 3(4), 1-35.
Abdi, E., Safari Gerayli, M., & Rezaei Pitenoei, Y. (2022). Corporate inertia and
information asymmetry: evidence from Iran. Iranian Journal of Accounting,
Auditing and Finance, In Press.
Assad, N. F., & Alshurideh, M. T. (2020). Investment in context of financial
reporting quality: a systematic review. WAFFEN-UND Kostumkd. J, 11(3),
255-286.
Babajani, J., & Akbari, M. (2021). Modeling the effect of environmental corporate
governance rating in the pricing information asymmetry. Iranian Journal of
Finance, 5(1), 91-121
Badavar Nahandi, Y., & Sarafraz, E. (2018). The relationship between stock
mispricing and corporate investments with emphasis on the role of financial
constraints and time horizon of stockholders’ investment. Financial
Knowledge of Securities Analysis, 11(37), 119-132. In Persian.
86 Shamsoddini et al., Iranian Journal of Economic Studies, 12(1) 2023, 69-88
Blankespoor, E., deHaan, E., & Marinovic, I. (2020). Disclosure processing costs,
investors’ information choice, and equity market outcomes: A
review. Journal of Accounting and Economics, 70(2-3), 101344.
Brunnermeier, M. K. (2001). Asset pricing under asymmetric information:
Bubbles, crashes, technical analysis, and herding. Oxford University Press,
USA.
Carpenter, J. N., Lu, F., & Whitelaw, R. F. (2021). The real value of China’s stock
market. Journal of Financial Economics, 139(3), 679-696.
Cheryta, A. M., Moeljadi, M., & Indrawati, N. K. (2018). Leverage, asymmetric
information, firm value, and cash holdings in Indonesia. Jurnal Keuangan
dan Perbankan, 22(1), 83-93.
Choi, H. M. (2014). When good news is not so good: economy wide uncertainty
and stock returns. Journal of Business Finance & Accounting, 41(9-10),
1101-1123.
Clark, E., & Lakshmi, G. (2007). Asymmetric information and the pricing of
sovereign Eurobonds: India 1990–1992. Global Finance Journal, 18(1), 124-
142.
Coutts, A. (2019). Good news and bad news are still news: Experimental evidence
on belief updating. Experimental Economics, 22(2), 369-395.
Cox, J.C., Ingersoll, J.E., & Ross, S.A. (1985). An intertemporal general
equilibrium model of asset prices. Econometrica, 53(2), 363-384.
Derakhshan, M., & Hosseini Kondelaji, M. (2018). Modelling and experimental
testing of asymmetric information problems in lease and hire contracts (based
on contract theory). Iranian Journal of Economic Studies, 6(1), 65-86.
Ehiedu, V.C., & Obi, K.C. (2022). Efficient market hypothesis (EMH) and the
Nigerian stock exchange in the midst of global financial crises. International
Journal of Academic Management Science Research, 6(8), 263-273.
Ghorbani, N., & Korzeniowski, A. (2020). Adaptive risk hedging for call options
under Cox-Ingersoll-Ross interest rates. Journal of Mathematical
Finance, 10(4), 697.
Han, X., Hsu, S., Li, J., & An, R. (2023). Economic policy uncertainty, non-
financial enterprises' shadow banking activities and stock price crash
risk. Emerging Markets Review, 54, 101003.
He, F., Wang, Z., & Yin, L. (2020). Asymmetric volatility spillovers between
international economic policy uncertainty and the US stock market. The
North American Journal of Economics and Finance, 51, 101084.
Hejazi, R., Kalhornia, H., Dadashi, I., & Firooznia, A. (2018). Investigating the
effect of stock price informativeness on labor investment efficiency. Iranian
Journal of Value and Behavioral Accountings Achievements, 3(5), 209-232.
In Persian.
Hewamana, H. M. R. R., Siriwardhane, D. R. J., & Rathnayake, R. M. A. K.
(2022). Nexus between asymmetric information and stock market volatility:
evidence from Sri Lanka. Sri Lanka Journal of Economic Research, 9(2), 83.
Shamsoddini et al., Iranian Journal of Economic Studies, 12(1) 2023, 69-88 87
Huy, D. T. N., Dat, P. M., & Anh, P. T. (2020). Building an econometric model
of selected factors impact on stock price: A case study. Journal of Security
& Sustainability Issues, 9, 77-93.
Ilham, R. N., Irawati, H., Nurhasanah, N., Inuzula, L., Sinta, I., & Saputra, J.
(2022). Relationship of Working Capital Management and Leverage on Firm
Value: An Evidence from the Indonesia Stock Exchange. Journal of Madani
Society, 1(2), 64-71.
Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for Unit Roots in
Heterogeneous Panels. Journal of Econometrics, 115(1), 53-74.
Karahan, C. C., & Soykök, E. (2023). On illiquidity of an emerging sovereign
bond market. Economic Systems, 47(2), 101073.
Leonardo, M. P., Eduardo, C. M. C., María, T. H. A., Luis, T. G. J., & Elias, L.
R. C. (2022). Formalization of a new stock trend prediction methodology
based on the sector price book value for the Colombian market. Heliyon,
8(4), e09210.
Luo, Y., & Zhang, C. (2020). Economic policy uncertainty and stock price crash
risk. Research in International Business and Finance, 51, 101112.
Mahinizadeh, M., Yavari, K., Valibeigi, H., & Shafiei, A. (2018). The effect of
asymmetric information in the money market on investment, employment,
and production in Iran. Iranian Journal of Economic Studies, 7(2), 191-217.
Megaravalli, A. V., & Sampagnaro, G. (2018). Macroeconomic indicators and
their impact on stock markets in ASIAN 3: A pooled mean group
approach. Cogent Economics & Finance, 6(1), 1432450.
Mishura, Y., & Yurchenko-Tytarenko, A. (2018). Fractional Cox–Ingersoll–Ross
process with non-zero «mean». Modern Stochastics: Theory and
Applications, 5(1), 99-111.
Mishura, Y., & Yurchenko-Tytarenko, A. (2023). Standard and fractional
reflected Ornstein–Uhlenbeck processes as the limits of square roots of Cox–
Ingersoll–Ross processes. Stochastics, 95(1), 99-117.
Mulchandani, P., Pandey, R., & Debata, B. (2023). Deliberate underpricing and
after-market mispricing in Indian IPO market: Stochastic frontier
approach. Journal of Indian Business Research, 15(3), 356-378.
Nourani, H., & Shamsoddini, M. (2024). The Effect of conservative financial
reporting on the relationship between environmental uncertainty and accrual
anomaly. Journal of Accounting Knowledge, 15(1), 25-46. In Persian.
Ola, M. R., Matinfard, M., & Minab, M. (2018). Evaluating the effect of political
uncertainty on the cost stickiness. Iranian Journal of Accounting, Auditing
and Finance, 2(4), 1-10.
Pan, Y., Zhang, L., Wu, X., & Skibniewski, M. J. (2020). Multi-classifier
information fusion in risk analysis. Information Fusion, 60, 121-136.
Rahmanian Koushkaki, A., & Bahremandjouy, S. (2022). Investigating the
relationship between information asymmetry and political communication
with investment efficiency in Tehran Stock Exchange. Iranian Journal of
Finance, 6(3), 116-141.
88 Shamsoddini et al., Iranian Journal of Economic Studies, 12(1) 2023, 69-88
Safaei, M., Neisy, A., & Nematollahi, N. (2018). A numerical method for solving
the problem of pricing American options under the CIR stochastic interest
rate model. Financial Engineering and Portfolio Management, 9(35), 259-
281. In Persian.
Shamsoddini, M., Shahiki Tash, M.N., & Khodadad Kashi, F. (2017). Asymmetric
information and imperfect competition in financial markets. The Dissertation
of Ph.D. in Economics, University of Sistan & Baluchestan. In Persian.
Sharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices,
stock market, geopolitical risk and policy uncertainty nexus in the US
economy: Fresh evidence from the wavelet-based approach. International
review of financial analysis, 70, 101496.
Suimon, Y., Sakaji, H., Izumi, K., & Matsushima, H. (2020). Autoencoder-based
three-factor model for the yield curve of Japanese government bonds and a
trading strategy. Journal of Risk and Financial Management, 13(4), 82.
Vakilifard, H., & Salehi, A. (2011). Economic and accounting factors affecting
stock prices. The Financial Accounting and Auditing Research, 3(10). 27-46.
In Persian.
Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal
of Financial Economics, 5(2), 177-188.
Wang, H., Wang, X., Bu, F., Wang, G., & Pan, Y. (2018). How the asymmetric
information creates bubbles in stock market. Open Journal of Social
Sciences, 6(8), 202-2015.
Zhang, X., Zhang, Y., Wang, S., Yao, Y., Fang, B., & Philip, S. Y. (2018).
Improving stock market prediction via heterogeneous information
fusion. Knowledge-Based Systems, 143, 236-247.
Zhou, Z., Gao, M., Liu, Q., & Xiao, H. (2020). Forecasting stock price movements
with multiple data sources: Evidence from stock market in China. Physica A:
Statistical Mechanics and its Applications, 542, 123389.