Investigating the impact of private sector credit on self-employment in Iran: A hybrid artificial intelligence and spatial modelling approach

Document Type : Research Paper

Authors

Faculty of Economics and Management, Urmia University, Urmia, Iran.

Abstract

Self-employment plays an important role in the Iranian economy and understanding the factors affecting it is of great importance. This study aimed to investigate the impact of private sector credit on self-employment in Iran using artificial intelligence techniques such as artificial neural networks, deep neural networks and machine learning algorithms to identify nonlinear relationships and complex patterns in the data. Also, spatial econometric models SAR, SEM and SDM were used to consider spatial dependencies between provinces and to examine the spatial spillover effects of use for the period 1990-2023 at the provincial level of the country.

The findings indicate a negative and significant relationship between the ratio of microfinance to GDP and the self-employment rate. Also, the negative coefficients of the economic openness index and the capital formation rate indicate their negative effect on self-employment. In contrast, the variables of total factor productivity and educational expenditure have a positive and significant effect on the self-employment rate. The results of the spatial models also indicate the dependence of the self-employment rate in different regions of the country on each other. Therefore, this study found a negative relationship between the two, which could be due to inefficiency in the provision of microfinance and its insufficient focus on creating sustainable and productive jobs. Increased economic openness and higher rates of capital formation also have a negative effect on self-employment by intensifying foreign competition and encouraging investment in larger economic sectors.

Keywords

Main Subjects


Article Title [Persian]

بررسی تاثیر اعتبار بخش خصوصی بر خوداشتغالی در ایران: رویکرد هوش مصنوعی ترکیبی و مدل سازی فضایی

Authors [Persian]

  • رضا طاهری هفت آسیابی
  • آمنه نادری
  • یوسف محمدزاده
  • اکبر زواری رضایی
دانشکده اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران.
Abstract [Persian]

خوداشتغالی نقش مهمی در اقتصاد ایران دارد و درک عوامل موثر بر آن از اهمیت زیادی برخوردار است. این مطالعه با هدف بررسی تأثیر اعتبارات بخش خصوصی بر خوداشتغالی در ایران با استفاده از تکنیک های هوش مصنوعی مانند شبکه های عصبی مصنوعی، شبکه های عصبی عمیق و الگوریتم های یادگیری ماشین امکان شناسایی روابط غیرخطی و الگوهای پیچیده در داده ها را فراهم کرد. همچنین مدل های اقتصادسنجی فضایی SAR، SEM و SDM بادر نظر گرفتن وابستگی های مکانی بین استان ها و بررسی اثرات سرریز فضایی استفاده مربوط به دوره زمانی ۱۹۹۰تا ۲۰۲۳ در سطح استان های کشور صورت گرفته است.

یافته ها حاکی از رابطه منفی و معنادار بین نسبت تسهیلات خرد به تولید ناخالص داخلی و نرخ خوداشتغالی است. همچنین ضرایب منفی شاخص باز بودن اقتصادی و نرخ تشکیل سرمایه، اثر منفی آنها بر خوداشتغالی را نشان می دهد. در مقابل، متغیرهای بهره وری کل عوامل تولید و مخارج آموزشی تأثیر مثبت و معناداری بر نرخ خوداشتغالی دارند. نتایج مدل های فضایی نیز بیانگر وابستگی نرخ خوداشتغالی در مناطق مختلف کشور به یکدیگر است. بنابراین، این مطالعه رابطه منفی بین این دو را نشان داد که می تواند ناشی از ناکارآمدی در ارائه تسهیلات خرد و عدم تمرکز کافی آن بر ایجاد مشاغل پایدار و مولد باشد. افزایش باز بودن اقتصادی و نرخ های بالاتر تشکیل سرمایه نیز با تشدید رقابت خارجی و تشویق سرمایه گذاری در بخش های بزرگتر اقتصادی، اثر منفی بر خوداشتغالی دارند.

Keywords [Persian]

  • دسترسی مالی
  • خوداشتغالی
  • کاربردهای هوش مصنوعی
  • تحلیل فضایی
  • میکروفاینانس
Abbas , J, Lorente, D, Amjid , M, Al-Sulaiti, K, Al-Sulaiti, I, & Aldereai, O. (2024). Financial innovation and digitalization promote business growth: The interplay of green technology innovation, product market competition and firm performance. Innovation and Green Development, 3(1), 100-111. doi:10.1016/j.igd.2023.100111.
Abdulraqeb, H, & Shahin, W. (2024). The Impact of Financial Resources Availability on Self-Employment Rates in Saudi Arabia. In Achieving Sustainable Business Through Artificial Intelligence, Technology Education and Computer Science. 159, 537-549. https://doi.org/10.1007/978-3-031-48519-8_38
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/10.1016/j.heliyon.2018.e00938
Abiola, B, isola, L, Asaleye, A, & Okafor, T. (2020). Financial stability and entrepreneurship development in sub-Sahara Africa: Implications for sustainable development goals. Cogent Social Sciences, 6 (1), 1798330. doi:10.1080/23311886.2020.1798330
Acs, Z. J, & Szerb, L. (2007). Entrepreneurship, economic growth and public policy. Small business economics, 28(2), 109-122. doi:10.1007/s11187-006-9012-3.
Alfaro, L, Chanda, A, Kalemli-Ozcan, S, & Sayek, S. (2003). FDI and Economic Growth: The Role of Local Financial Markets. SSRN Electronic Journal, 64(1), 89-112. doi:10.1016/S0022-1996(03)00081-3
Amini Milani, Minoo, Alipour, Mohammadsadegh, & Mahmoodzadeh, Alireza. (2021). Evaluation of Employment Policies in Iran. JOURNAL OF ECONOMIC STUDIES AND POLICIES, 8(1 (15), 79-106. (in Persian).https://sid.ir/paper/956888/en
Amini, A. (2015). Analysis of the labor market and employment generation policies of the Iranian economy with emphasis on the Fourth Economic, Social and Cultural Development Plan. J. Economic Magazine, 5(6), 23-40. (in persian). http://ejip.ir/article-۱-۶۳۱-fa.html.
Ansari, O. B., & Binninger, F.-M. (2022). A deep learning approach for estimation of price determinants. International Journal of Information Management Data Insights, 2(2), 100101. https://doi.org/10.1016/j.jjimei.2022.100101
Anselin, L. (1988). Spatial econometrics: Methods and models. Kluwer Academic Publishers. https://link.springer.com/book/10.1007/978-94-015-7799-1
Anselin, L. (2003). Spatial externalities, spatial multipliers, and spatial econometrics. International Regional Science Review, 26(2), 153-166. https://journals.sagepub.com/doi/10.1177/0160017602250972 (text/html)
Arestis, P, & Demetriades, P. (1997). Financial Development and Economic Growth: Assessing the Evidence. The Economic Journal, 107(442), 783-799. doi:org/10.1111/j.1468-0297.1997.tb00043.x
Ata-Agboni, J, Adama, I, Sumaila, A, & Suleiman, R. (2024). Assessment of the Causes of Poverty and Unemployment in Omala Local Government Area, Kogi State, Nigeria. International Journal of Democracy and Development Studies, 6(4), 34-42. journals.rcmss.com/index.php/ijdds/article/view/968
Augsburg, B, De Haas, R, Harmgart, H, & Meghir, C. (2015). The impacts of microcredit: Evidence from Bosnia and Herzegovina. American Economic Journal: Applied Economics, 7(1), 183-203. DOI: 10.1257/app.20130272
Bahdanau, D, Cho, K, & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. https://arxiv.org/abs/1409.0473.
Banerjee, A, Karlan, D, & Zinman, J. (2015). Six randomized evaluations of microcredit: Introduction and further steps. American Economic Journal: Applied Economics, 7(1), 1-21. http://dx.doi.org/10.1257/app.20140287
Barba-Sánchez, V, & Atienza-Sahuquillo, C. (2017). Entrepreneurial motivation and self-employment: evidence from expectancy theory. Int Entrep Manag J, 13, 1097-1115. doi:10.1007/s11365-017-0441-z
Barro, R. J. (1991). Economic growth in a cross section of countries. The Quarterly Journal of Economics, 106(2), 407-443. http://hdl.handle.net/10.2307/2937943 
Beaugrand, P. (2004). And Schumpeter Said, “This Is How Thou Shalt Grow”: The Further Quest for Economic Growth in Poor Countries. IMF Working Paper, 1-22. https://www.imf.org/external/pubs/ft/wp/2004/wp0440.pdf
Beck, T, Demirgüç-Kunt, A, & Maksimovic, V. (2008). Financing patterns around the world: Are small firms different? Journal of Financial Economics, 89(3), 467-487. doi: 10.1016/j.jfineco.2007.10.005
Becker, G. S. (1993). Human capital: A theoretical and empirical analysis, with special reference to education. University of Chicago Press. https://econpapers.repec.org/bookchap/nbrnberbk/beck94-1.htm
Bengio, Y, Lamblin, P, Popovici, D, & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 19, 153-160. https://www.researchgate.net/publication/200744514_Greedy_layer-wise_training_of_deep_networks
Blau, F, & Kahn, L. (1999). Chapter 25 - Institutions and Laws in the Labor Market. Handbook of Labor Economics, 3(A), 1399-1461. doi:10.1016/S1573-4463(99)03006-0
Boldureanu, G, Ionescu, A. M, Bercu, A. -M, Bedrule-Grigoruță, M. V, & Boldureanu, D. (2020). Entrepreneurship Education through Successful Entrepreneurial Models in Higher Education Institutions. Sustainability, 12(3), 12-67. doi:10.1016/j.jik.2023.100353
Breiman, L, Friedman, J, Stone, C. J, & Olshen, R. A. (1984). Classification and regression trees. CRC press. https://doi.org/10.1201/9781315139470
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Caraher, K, & Reuter, E. (2019). Vulnerability of the 'entrepreneurial self': Analysing the interplay between labour markets and social policy. Journal of Social Policy, 27(2), 199-217. https://doi.org/10.1332/175982718X15451303785398
Central Bank of the Islamic Republic of Iran. (2021). Selected Economic Statistics. Available at: https://www.cbi.ir/page/20949.aspx
Chen, T, & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://dl.acm.org/doi/10.1145/2939672.2939785.
 Cho, K, Van Merriënboer, B, Gulcehre, C, Bahdanau, D, Bougares, F, Schwenk, H, & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. https://arxiv.org/abs/1406.1078.
Cho, Y, Robalino, D, & Watson, S. (2016). Supporting self-employment and small-scale entrepreneurship: potential programs to improve livelihoods for vulnerable workers. IZA Journal of Labor Policy, 5(1), 1-26. doi:10.1186/s40173-016-0060-2
Chung, J, Gulcehre, C, Cho, K, & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. https://doi.org/10.48550/arXiv.1412.3555
Coelli, T. J, Rao, D. S. P, O'Donnell, C. J, & Battese, G. E. (2005). An introduction to efficiency and productivity analysis. Springer Science & Business Media. https://link.springer.com/book/10.1007/b136381
Dabbous, A, Barakat , K, & Kraus, S. (2023). The impact of digitalization on entrepreneurial activity and sustainable competitiveness: A panel data analysis. Technology in Society, 73 (02224), 1-13. doi:10.1016/j.techsoc.2023.102224
Dabić, M, Maley, J, Švarc, J, & Poček, J. (2023). Future of digital work: Challenges for sustainable human resources management. Journal of Innovation & Knowledge, 8(2), 100352-100362. doi:10.1016/j.techsoc.2023.102224
dashtban farooji, S. (2015). Survey Relation between Economic Growth, Development of Banking Sector and Macroeconomic Variables with Panel-Var Method, Case Study D8 Countries. Quarterly Journal of Quantitative Economics, 12(4), 39-65. (in persian). doi:10.22055/jqe.2015.12103
Devlin, J, Chang, M. W, Lee, K, & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805
Drucker, H, Burges, C. J, Kaufman, L, Smola, A. J, & Vapnik, V. (1997). Support vector regression machines. Advances in Neural Information Processing Systems,9,155-161. https://www.researchgate.net/publication/309185766_Support_vector_regression_machines
Du, J, & Nguyen, B. (2019). Cognitive financial constraints and firm growth. Small Business Economics, 58, 2019-2137. doi:10.1007/s11187-021-00503-7.
Effiong, U. E, Ekpe, J. P, & Udofia, M. A. (2022). An Empirical Examination of the Influence of Private Sector Credit on Unemployment in Nigeria. International Journal of Academic Multidisciplinary Research, 6(9), 187-199. https://www.researchgate.net/publication/364011792_An_Empirical_Examination_of_the_Influence_of_Private_Sector_Credit_on_Unemployment_in_Nigeria.
Eide, E, & Showalter, M. (2021). Human Capital. International Encyclopedia of Education (Third Edition), 282-287. doi:10.1016/B978-0-08-044894-7.01213-6
Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), 9-28. https://doi.org/10.1080/17421770903541772
Elhorst, J. P. (2014). Spatial econometrics: From cross-sectional data to spatial panels. Springer. https://link.springer.com/book/10.1007/978-3-642-40340-8
Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211. https://doi.org/10.1207/s15516709cog1402_1
Evans, D. S, & Jovanovic, B. (1989). An estimated model of entrepreneurial choice under liquidity constraints. Journal of political economy, 97(4), 808-827. doi:10.1086/261629
Fassmann, H. (2001). Spatial Labor Markets. International Encyclopedia of the Social & Behavioral Sciences, 14800-14804. doi:10.1016/B0-08-043076-7/02559-6
Fingleton, B., & Le Gallo, J. (2008). Estimating spatial models with endogenous variables, a spatial lag and spatially dependent disturbances: Finite sample properties. Journal of Geographical Systems, 10(3), 319-354. DOI:10.1111/j.1435-5957.2008. 00187.x
Frankel, J. A, & Romer, D. H. (1999). Does trade cause growth?. American Economic Review, 89(3), 379-399. DOI: 10.4324/9781315254166-11
Freund, Y, & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
Gal, Y, & Ghahramani, Z. (2016). A theoretically grounded application of dropout in recurrent neural networks. In Advances in neural information processing systems.1019-1027.
https://doi.org/10.48550/arXiv.1512.05287
Gancia, G, & Zilibotti, F. (2005). Chapter 3 Horizontal Innovation in the Theory of Growth and Development. Handbook of Economic Growth, 1(A), 111-170. doi:10.1016/S1574-0684(05)01003-8
Ghavidel, S; (2008). Factors of Self-Employment in Iran Labour Market. Economic research (sustainable growth and development); 8 (1), 21-41 (in persian). http://ecor.modares.ac.ir/article-18-10566-en.html
hallaji, A, Ghavidel, S, Soufi Majidpour, M, & Heydari, A. A. (2024). Estimating the supply of and demand for labor force until 2050 in Iran. Economic Research (Sustainable Growth and Development), QJER, 24(1), 253-282. (in persian). doi:10.22034/24.1.255
Hariram, N. P, Mekha, K. B, Suganthan, V, & Sudhakar, K. (2023). Sustainalism: An Integrated Socio-Economic-Environmental Model to Address Sustainable Development and Sustainability. Sustainability, 5(13), 10682. doi:org/10.3390/su151310682
Hartigan, J. A, & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. http://www.jstor.org/page/info/about/policies/terms.jsp
Hassanali, & Nasir, R. N. (2024). Efficiency of Microfinance Banks and Microfinance Institutions: In Creating Self-Employment in Pakistan. International Journal of Management and Emerging Sciences Research, 13(4), 24-51. https://doi.org/10.56536/m22jnf66
Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Pearson. https://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009.pdf
Herkenhoff, K, Phillips, G. M, & Cohen-Cole, E. (2021). The impact of consumer credit access on self-employment and entrepreneurship. Journal of Financial Economics, 141(1), 345-371. https://doi.org/10.1016/j.jfineco.2021.03.004
 Hinton, G. E, & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507. https://www.science.org/doi/10.1126/science.1127647
Hinton, G. E, Osindero, S, & Teh, Y. W. (2006). A fast-learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554. DOI: 10.1162/neco.2006.18.7.1527
Hochreiter, S, & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. DOI: 10.1162/neco.1997.9.8.1735
Hoseinpour Naderi, M, & Alijani, F. (2024). The Impact of Bank Credits on Employment in Iran's Agricultural Sector With an Emphasis on the Role of Bank Ownership. Economic Growth and Development Research, 14(56), 25-42. (in persian). doi: 10.30473/egdr.2024.69131.6773
Imai, K. S, Gaiha, R, Thapa, G, and Annim, S. K. (2012). Microfinance and Poverty- A Macro Perspective. World Development Elsevier, 40(8), 1675-1689.DOI: 10.1016/j.worlddev.2012.04.013
Ioffe, S, & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning. 448-456.https://doi.org/10.48550/arXiv.1502.03167
Jain, A., Nandakumar, K., & Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern Recognition, 38(12), 2270-2285. https://doi.org/10.1016/j.patcog.2005.01.012
Kananurak, P, & Sirisankanan, A. (2020). Financial development and self-employment. International Journal of Development Issues, 19(3), 339-357. https://doi.org/10.1108/IJDI-11-2019-0190
Kannapalan, Kumudhini, (2024). Contribution of Self Employment Loans in Livelihood Improvement  Entrepreneurship & Economics eJournal Available at SSRN. 18(49), 1-17. https://ssrn.com/abstract=4905036 or http://dx.doi.org/10.2139/ssrn.4905036
Kim, G. (2007). The analysis of self-employment levels over the life-cycle. The Quarterly Review of Economics and Finance, 47(3), 397-410. doi: 10.1016/j.qref.2006.06.004
Kingma, D. P, & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Kingma, D. P, & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
Kipf, T. N, & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
Klapper, L, Laeven, L, & Rajan, R. (2006). Entry regulation as a barrier to entrepreneurship. Journal of financial economics, 82(3), 591-629. doi: 10.1016/j.jfineco.2005.09.006
Kunawotor, M, & Ahiabor, G. (2024). Self-employment, financial access and economic well-being: Empirical evidence from Africa. Journal of Financial Economic Policy. 16(20), 56-79. https://doi.org/10.1108/JFEP-03-2024-0087.
Le, A. (2002). Empirical Studies of Self-Employment. Journal of Economic Surveys, 13(4), 381-416. doi:10.1111/1467-6419.00088.
LeCun, Y, Bottou, L, Bengio, Y, & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. DOI: 10.1109/5.726791
LeSage, J, & Pace, R. K. (2009). Introduction to spatial econometrics. CRC press. https://www.researchgate.net/publication/339938974_LeSage_Pace_2009_Introduction_to_Spatial_Econometrics_Statistics_A_Series_of_Textbooks_and_Monographs
Liaw, A, & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18-22. https://www.researchgate.net/publication/228451484_Classification_and_Regression_by_RandomForest
Looi Kee, H, & Chen, D. (2005). A Model on Knowledge and Endogenous Growth. SSRN Electronic Journal, 1(28), 1-24. doi:10.2139/ssrn.678901
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281-297. https://www.scirp.org/reference/referencespapers?referenceid=2232949
 McCulloch, W. S, & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133. https://doi.org/10.1007/BF02478259
McDaniel, B. (2005). A Contemporary View of Joseph A. Schumpeter’s Theory of the Entrepreneur. Journal of Economic Issues, 39(2), 485-490. doi:10.1080/00213624.2005.11506826
McKernan, S.-M. (2002). The Impact Of Microcredit Programs On Self-Employment Profits: Do Noncredit Program Aspects Matter? Review of Economics and Statistics, 84(1), 93-115. doi:10.1162/003465302317331946
Menon, N, & Rodgers, Y. (2013). Credit and self-employment. Handbook of Research on Gender and Economic Life, 22, 359-377. doi:10.4337/9780857930958.00035
Mohamed, H, Mirakhor, A, & Erbaş, S. (2019). Chapter 2 - Theoretical Frameworks. Belief and Rule Compliance, An Experimental Comparison of Muslim and Non-Muslim Economic Behavior(Perspectivs in Behavioral Economics and the Economics of Beh), 7-41. doi:org/10.1016/B978-0-12-813809-0.00002-3
Mohammadi, H, Karim, M. H, Samare Hashemi Shabjare, K, & Sargazi, A. (2019). The Effects of Economic Shocks on Labor Market in Iran. Quarterly Journal of The Macro and Strategic Policies, 7(26), 268-285. (in persian). doi:10.32598/JMSP.7.2.268
Muñoz-Céspedes, E, Ibar-Alonso, R, & Cuerdo-Mir, M. (2024). Individual entrepreneurial behavior and financial literacy. Int Entrep Manag J, 20, 2263-2285. doi:10.1007/s11365-023-00936-4
Nair, V, & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning. 10(1), 807-814. https://dl.acm.org/doi/10.5555/3104322.3104425.
Narita, R. (2020). Self-employment in developing countries: A search-equilibrium approach. Review of Economic Dynamics, 36, 1-34. doi:org/10.1016/j.red.2019.04.001
Nielsen, D. (2016). Tree boosting with XGBoost-why does XGBoost win "every" machine learning competition? (Master's thesis, NTNU). http://hdl.handle.net/11250/2433761
Nikpey, V., & Mohammadzadeh, Y; Rezazadeh, A; Ansari Samani, H. (2024). Spatial analysis of dependency culture resulting from exchange rate fluctuations on herding behavior in Iran’s housing market. International Journal of Housing Markets and Analysis. https://doi.org/10.1108/IJHMA-09-2024-0137
Olowofeso, E. O, Adeleke, A. O, & Udoji, A. O. (2015). Impact of private sector credit on economic growth in Nigeria. CBN Journal of Applied Statistics, 6(2), 81-101. Retrieved from hdl.handle.net/10419/142107
Pascanu, R, Mikolov, T, & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In International conference on machine learning. 1310-1318.https://doi.org/10.48550/arXiv.1211.5063
Pham, T, Talavera, O, & Zhang, M. (2018). Self-employment, financial development, and well-being: Evidence from China, Russia, and Ukraine. Journal of Comparative Economics, 46(3), 754-769. https://doi.org/10.1016/j.jce.2018.07.006
Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade (pp. 55-69). Springer. https://link.springer.com/chapter/10.1007/3-540-49430-8_3
Quayes, S. (2012). Depth of Expansion and Financial Sustainability of Microfinance Institutions. Applied Economics, 44(26), 3421-3433. DOI: 10.1080/00036846.2011.577016
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. http://dx.doi.org/10.1007/BF00116251
Rashidardeh, H, Khazaei, S, Zanjani, M, & Vali, M. (2017). The Future of Iran's Banking Industry with a Scenario Approach. Straitegic Management Studies, 8(30), 65-89. (in persian). Retrieved from civilica.com/doc/916494
Rumelhart, D. E, Hinton, G. E, & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
Saeedi, Parviz (2012). Investigating the impact of bank credit on employment. Journal of Macroeconomics. 14(2), 85-102 (in Persian). https://jes.journals.umz.ac.ir/article_65_33a9e17a9c4d103227ca739257b7a8c3.pdf
Salas, V, Sanchez-Asin, J, & Storey, D. (2014). Occupational choice, number of entrepreneurs and output: Theory and empirical evidence with Spanish data. Journal of the Spanish Economic Association, 5(1), 1-24. doi:10.1007/s13209-013-0103-5
Sarani, N, Sharifzadeh, M. S, Abdollahzadeh G. 2024. Impact Assessment of Micro- cre dit on Livelihood of Rural Households: Implications for Self-employment and Micro- entrepreneurship in the Light of Islamic-Iranian Model of Progress. Journal of Studies in Entrepreneurship and Sustainable Agricultural Development, 11 (2), 141-160. (in Persian). DOI: 10.22069/jead.2023.21633.1747
Scarselli, F, Gori, M, Tsoi, A. C, Hagenbuchner, M, & Monfardini, G. (2009). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61-80. https://ieeexplore.ieee.org/document/4700287
Scherer, D, Müller, A, & Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. In International conference on artificial neural networks. 92-101. DOI: 10.1007/978-3-642-15825-4_10
Shahabadi, Abolfazl, and Khatami, Tayyebeh. (2013). Determinants of Self-Employment in the Iranian Economy. Journal of Sustainable Growth and Development (Economic Research), 13(1), 91-109. (in Persian). https://sid.ir/paper/86622/fa
Smola, A. J, & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222. https://alex.smola.org/papers/2004/SmoSch04.pdf
Sohaili, K, Fatahi, S, & mohammadi, S. (2018). Investigating the role and effects of private and public investment on employment in provinces of Iran: GMM approach. Macroeconomics Research Letter, 12(24), 121-148. doi: 10.22080/iejm.2018.1940
Srivastava, N, Hinton, G, Krizhevsky, A, Sutskever, I, & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. https://jmlr.csail.mit.edu/beta/papers/v15/srivastava14a.html
Sundbo, J. (2015). Innovation, Theory of. International Encyclopedia of the Social & Behavioral Sciences (Second Edition), 169-174. doi:10.1016/B978-0-08-097086-8.32075-X
Taheri Haftasiabi, R, mohammadzade, y; Naderi, a; (2024). Prediction of the impact of bank failure risk on micro-credit in Iran: an artificial intelligence approach. International Journal of Management, Accounting and Economics (IJMAE). 11(12), 1-19. https://www.ijmae.com/article_210440.html
Tayyibi, Seyed Kamil, and Abbaslou, Yaser. (2009). Bank Credit and Other Economic Determinants of the Business Environment in Iran. Money and Economy, -(1), 57-78. (in Persian). https://sid.ir/paper/168092/fa
Thurik, R, Carree, M, van Stel, A, & Audretsch, D. (2008). Does Self-Employment Reduce Unemployment? SSRN Electronic Journal, 23(6), 673-686. doi:10.1016/j.jbusvent.2008.01.007
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
Uiku, H. (2004). R&D, Innovation, and Economic Growth: An Empirical Analysis. International Monetary Fund, 04(185), 1-37. Retrieved from https://www.imf.org/external/pubs/ft/wp/2004/wp04185.pdf
Vaswani, A, Shazeer, N, Parmar, N, Uszkoreit, J, Jones, L, Gomez, A. N, ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems. 5998-6008. https://doi.org/10.48550/arXiv.1706.03762
Vincent, P, Larochelle, H, Bengio, Y, & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning.1096-1103. DOI: 10.1145/1390156.1390294
Virk, A, Nelson, E.-U, & Dele-Adedeji, I. (2023). The challenge of youth unemployment in Nigeria. Journal of International and Comparative Social Policy, 39(3), 319–329. doi:10.1017/ics.2024.4
Willis, D, Hughes, D, Boys, K, & Swindall , D. (2020). Economic growth through entrepreneurship: Determinants of self‐employed income across regional economies. Papers in Regional Science, 99(1), 73-96. doi:10.1111/pirs.12482
World Bank. (2021). World Development Indicators. https://data.worldbank.org/
Zou, H, & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x