Analyzing the Interaction Between Leading Stocks and Exchange Rate Shocks Using Network Analysis and VAR-GARCH: Evidence from the Tehran Stock Exchange

Document Type : Research Paper

Authors

1 Department of Economics, Firuzkuh Branch, Islamic Azad University, Firuzkuh, Iran.

2 Department of Economics, Tehran Central Branch, Islamic Azad University, Tehran, Iran.

Abstract

Identifying leading stocks is critical for investors, particularly in markets lacking comprehensive analytical tools. Effective stock selection necessitates an integrated approach that combines financial network analysis, performance evaluation, and predictive modeling. This study examines firm-level interconnections within the Tehran Stock Exchange, focusing on the implications of exchange rate shocks. A dual-phase analytical framework is applied: first, Minimum Spanning Tree network analysis identifies leading stocks and quantifies the effects of exchange rate fluctuations; second, VAR-GARCH models assess volatility dynamics of leading stocks, while the iterated cumulative sum of squares method detects structural breaks in market behavior. The dataset includes daily returns of 50 top-performing stocks and the free-market USD exchange rate across two periods: pre-shock (March 24, 2016–April 3, 2018) and post-shock (April 4, 2018–July 21, 2020). Pre-shock, Pars Khodro, Foulad, and Kegol dominated the market. Post-shock, export-driven sectors such as metals retained leadership due to competitive advantages, while import-dependent industries like automotive declined significantly. Later, stocks including Veghadir, Foulad, Sharak, and Tipico emerged as new leaders, reflecting structural realignments driven by currency volatility. The findings highlight the efficacy of network-driven methodologies in portfolio optimization and risk management, offering empirical clarity on sectoral dependencies and exchange rate sensitivities in emerging economies.

Keywords

Main Subjects


Article Title [Persian]

تحلیل تعامل سهام‌های پیشرو و شوک‌های نرخ ارز با استفاده از تحلیل شبکه و الگوی VAR-GARCH: شواهدی از بورس اوراق بهادار تهران

Authors [Persian]

  • مصطفی برات پور 1
  • قدرت الله امام وردی 2
  • محمود محمودزاده 1
  • پروانه سلاطین 1
1 گروه اقتصاد، واحد فیروزکوه، دانشگاه آزاد اسلامی، فیروزکوه، ایران.
2 گروه اقتصاد، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.
Abstract [Persian]

شناسایی سهام پیشرو برای سرمایه‌گذاران، به ویژه در بازارهایی که فاقد ابزارهای تحلیلی جامع هستند، امری حیاتی است. انتخاب مؤثر سهام مستلزم رویکردی یکپارچه است که تحلیل شبکه مالی، ارزیابی عملکرد و مدل‌سازی پیش‌بینانه را ترکیب می‌کند. این مطالعه به بررسی پیوندهای بین‌شرکتی در بورس اوراق بهادار تهران  با تمرکز بر پیامدهای شوک‌های نرخ ارز می‌پردازد. یک چارچوب تحلیلی دو مرحله‌ای به کار گرفته شد: نخست، تحلیل شبکه درخت پوشای کمینه (MST) برای شناسایی سهام پیشرو و اندازه‌گیری تأثیرات نوسانات نرخ ارز استفاده شد. سپس، مدل‌های VAR-GARCH برای تحلیل پویایی‌های نوسان در سهام پیشرو به کار رفتند، در حالی که روش مجموع تجمعی مربعات تکراری (ICSS) برای شناسایی شکست‌های ساختاری در رفتار بازار مورد استفاده قرار گرفت. داده‌ها شامل بازده روزانه ۵۰ سهام برتر و نرخ دلار در بازار آزاد در دو بازه زمانی است: پیش از شوک (05/01/1395تا14/01/1397) و پس از شوک (15/01/1397تا31/4/1399). در دوره پیش از شوک، شرکت‌های پارس خودرو، فولاد و کگل به‌عنوان سهم‌های رهبر شناسایی شدند. پس از شوک ارزی، بخش‌های صادرات‌محور مانند فلزات به دلیل مزیت رقابتی جایگاه رهبری خود را حفظ کردند، در حالی که صنایع واردات‌محور نظیر خودروسازی با افول قابل توجهی مواجه شدند. در مراحل بعدی، سهام‌هایی مانند وغدیر، فولاد، شاراک و تیپیکو به عنوان رهبران جدید ظهور یافتند که بازآرایی ساختاری ناشی از نوسانات ارزی را منعکس می‌کنند. یافته‌ها بر کارایی روش‌های مبتنی بر شبکه در بهینه‌سازی سبد سرمایه‌گذاری و مدیریت ریسک تأکید می‌کنند و وابستگی‌های بخشی و حساسیت به نرخ ارز را در اقتصادهای نوظهور به شکلی تجربی تبیین می‌نمایند.

Keywords [Persian]

  • جهش نرخ ارز.سهم‌های رهبر .درخت پوشای کمینه. VAR
  • GARCH
Aggarwal, R. (1981), “Exchange Rates and Stock Prices: A Study of the U.S. Capital Markets under Floating Exchange Rates”, Akron Business and Economic Review, 12, pp. 7-12.
Ahelegbey, D. F., Billio, M., & Casarin, R. (2016). Sparse graphical vector autoregression: A Bayesian approach. Annals of Economics and Statistics, GENES, 123-124, 333-361.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. doi: 10.15609/annaeconstat2009.123-124.0333
Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. https://doi.org/10.1103/RevModPhys.74.47
Al-Taie, M. Z. & Kadry, S., (2017). Python for graph and network analysis. Cham: Springer International Publishing. pp. 1-184.
Anderson, D. R., & Burnham, K. P. (2004). Model selection and multimodel inference: A practical information-theoretic approach. 2nd Edition, Springer.
Azarpeykan, E. S. (2020). Developing hierarchical stock trees in the capital market (A study in the Tehran Stock Exchange). The 6th National Conference on Applied Research in Management, Accounting, and Healthy Economy in Banking, Stock Exchange, and Insurance.
Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. Journal of Finance, 61(4), 1645-1680.
Barber, B. M., & Odean, T. (2001). Boys will be boys: Gender, overconfidence, and common stock investment. The Quarterly Journal of Economics, 116(1), 261-292.
Battiston, Stefano & Farmer, J & Flache, Andreas & Garlaschelli, Diego & Haldane, Andrew & Heesterbeek, Hans & Hommes, Cars & Jaeger, Carlo & May, Robert & Scheffer, Marten. (2016). Complexity theory and financial regulation. Science. 351. 818-819. 10.1126/science.aad0299.
Bazrayi, M., Ghavidel, S., & Emamverdi, G. (2021). Examining the impact of exchange rates on various industries in the stock market. Economic Modeling Quarterly, 15(1), 73-96. https://doi.org/10.3049/ECO.2021.1922778.2483
Bernanke, B. S., & Gertler, M. (1999). Monetary policy and asset price volatility. Federal Reserve Bank of Kansas City Economic Review, 84(4), 17-51
Billio, M., Getmansky, M., Lo, A. W., & Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk. Journal of Financial Economics, 104(3), 535–559. https://doi.org/10.1016/j.jfineco.2011.12.010
Bollerslev, T., & Engle, R. (2021). Modeling financial volatility in emerging markets using GARCH models. Journal of Financial Economics, 130(1), 1-22. https://doi.org/10.1016/j.jfineco.2021.01.001
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. 5th Edition, Wiley.
Branson, W. H. (1983). Macroeconomic Determinants of Real Exchange Rates. Journal of International Economics, 14(1-2), 1-21.
Brida, J. G., Matesanz, D. & Seijas, M. N., (2016). Network analysis of returns and volume trading in stock markets: The Euro Stoxx case. Physica A: Statistical Mechanics and its Applications, 444, 751-764. doi: 10.1016/j.physa.2015.10.078
Cheshmi, A., & Osmani, F. (2022). The returns of the Iranian stock market during three waves of the COVID-19 pandemic: Evidence from regression with multiple breaks. Iranian Journal of Economic Studies (IJES), 10(2), 339–364. https://doi.org/10.22099/ijes.2022.40521.1789
Coletti, P. (2016). Comparing minimum spanning trees of the Italian stock market using returns and volumes, Physica A, 463, pp. 246-261. https://doi.org/10.1016/j.physa.2016.07.029
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366a), 427-431.
Diebold, F. X., & Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119-134.
Dolfin, M., Kapetanios, G., Leonida, L. & Miranda, J., (2024). Investor behavior and multiscale cross-correlations: Unveiling regime shifts in global financial markets. https://doi.org/10.48550/arXiv.2408.17200
Dornbusch, R., & Fischer, S. (1980). Exchange Rates and the Current Account. American Economic Review, 70(5), 960-971.
Ebrahimi, S. K., & Rajabi, H. R. (2024). Presenting a model for portfolio optimization and risk management using network theory in Iran’s stock market. Accounting and Auditing Research, 62, 181–202.
Eichler, M. (2012). Causal inference in time series analysis. In Causality: Statistical perspectives and applications (pp. 327–354). Wiley. https://doi.org/10.1002/9781119945710.ch21
Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64(4), 813-836.
Engle, R. F. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. Journal of Economic Perspectives, 15(4), 157-168. doi: 10.1257/jep.15.4.157
Engle, R. F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007
Esmaili, N., & Eyhami, M. (2023). The impact of asymmetric information on stock returns: Using the VPIN approach in the Tehran Stock Exchange. Iranian Journal of Economic Studies (IJES), 12(1), 31–49. https://doi.org/10.22099/ijes.2024.47570.1909
Fama, E. F. & French, K. R., (1997). Industry costs of equity. Journal of financial economics, 43(2), 153-193.
Fama, E. F., & French, K. R. (1988). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25(1), 23-49.
Fang, L., & Bessler, D. A. (2017). Stock returns and interest rates in China: the prequential approach. Applied Economics, 49(53), 5412–5425. https://doi.org/10.1080/00036846.2017.1307934.
Francés, C. J., Grau-Carles, P., Arellano, D. J. (2018). The cryptocurrency market: A network analysis. Market Economics and Business Journal, 49: 569-583. https://doi.org 10.7200/esicm.161.0493.4i
George, S., Changat, M., (2017). Network Approach for Stock Market Data Mining and Portfolio Analysis, In 2017 International Conference on Networks & Advances in Computational Technologies (NetACT). doi: 10.1109/NETACT.2017.8076775
Gavin, M. (1989). Exchange Rate Movements and Stock Market Returns. Journal of International Money and Finance, 8(1), 115-124.
Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424–438. https://doi.org/10.2307/1912791
Granovetter, M. (1985). Economic action and social structure: The problem of embeddedness. American Journal of Sociology, 91(3), 481-510.
Greene, W. H. (2018). Econometric Analysis, (8th ed.). Pearson.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. Review of Financial Studies, 33(5), 2223– 2273. https://doi.org/10.1093/rfs/hhaa009
Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press
Kalyagin, V., Koldanov, A.P. & Koldanov, P.A., (2022). Using similarity measures for spanning tree construction: Theoretical equivalence and practical implications. Journal of Network Science, 10(3), 245-267. https://doi.org/10.1016/j.physa.2022.127482
Khoojine, A. S. & Han, D., (2019).. Network analysis of the Chinese stock market during the turbulence of 2015-2016 using log-returns, volumes and mutual information. Physica a-Statistical Mechanics and Its Applications, 523, 1091-1109. doi: 10.1016/j/physa.2019.04.128
Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48-50
Levine, R. (2005). Finance and growth: Theory and evidence. In Handbook of Economic Growth (Vol. 1, pp. 865-934). Elsevier. https://doi.org/10.1016/S1574-0080(05)01013-1
Li, Y., Jiang, X. F., Tian, Y., Li, S. P. & Zheng, B., (2019). Portfolio optimization based on network topology. Physica a-Statistical Mechanics and Its Applications, 515, 671-681.
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer
Mantegna, R. N., (1999). Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193-197 https://doi.org/10.1007/s100510050929
Markowitz, H., (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
Marti, G., Nielsen, F., Bińkowski, M. & Donnat, Ph. (2021). A Review of Two Decades of Correlations, Hierarchies, Networks and Clustering in Financial Markets. rogress in Information Geometry. Signals and Communication Technology. Springer, Cham, 245-274. https://doi.org/10.1007/978-3-030-65459-7_10.
Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. Journal of Finance, 42(3), 483-510.
Millington, T., Niranjan, M. (2021). Construction of minimum spanning trees from financial returns using rank correlation. Physica A: Statistical Mechanics and its Applications, Vol. 566, No. 125605, https://doi.org/10.1016/j.physa.2020.125605.
Mishkin, F. S., & Eakins, S. G. (2018). Financial markets and institutions (9th ed). Pearson.
Montashari, M., & Sadeghi, H. (2018). Classification of financial networks based on their topological properties (A study in the Tehran Stock Exchange). Financial Engineering and Securities Management Quarterly, 11(45), 319-342.
Nabavi Ghadi, N., Tehranachian, A. M., Rasakhi, S., Mojdeh, D., & Jafari Samimi, A. (2024). Monetary policy and crisis contagion in the stock market: An application of the Minimum Spanning Tree (MST). Research and Economic Policy Quarterly, 31(107), 43-68. http://dx.doi.org/10.61186/qjerp.31.107.43
Namaki, A., Abbasian, E., & Shafiei, E. (2022). Analyzing the level of systemic risk of Tehran Stock Exchange companies using a complex systems approach. Financial Management Strategy Quarterly, 10(36). https://doi.org/10.22051/JFM.2020.30910.2360
Newman, M. E. J. (2010). Networks: An introduction. Oxford University Press
Obstfeld, M., & Rogoff, K. (1995). The mirage of fixed exchange rates. Journal of Economic Perspectives, 9(4), 73-96. doi: 10.1257/jep.9.4.73
Onnela J.P., Chakraborti A. & Kaski, K., (2003). Dynamic of Market Correlation, Taxonomy and Portfolio Analysis, Physical Review, 68, (5). doi: 10.1103/PhysRevE.68.056110
Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.
Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Technical Journal, 36(6), 1389-1401
Ross, S. A., Westerfield, R. W., Jaffe, J., & Jordan, B. D. (2021). Corporate finance (13th ed.). McGraw-Hill Education.
Sadeghi, H., & Sharifi Samani, F. (2016). Topological characteristics of stock networks in the Tehran Stock Exchange (A case study of the JCPOA impact). Master’s Thesis, University of Science and Art.
Sadeghi, H., (2022). Portfolio Management Based on the Topology of the Iranian Stock Market Network, Iranian Journal of Management Studies, 15(3), 569-593. 10.22059/ijms.2021.320018.674466
Sedaghati, S., Samad, S., Farhadi, R., Falah-Shams Lialestani, M., & Mirfeiz, M. (2021). Portfolio management based on the topology of Iran's stock market network. Islamic Financial Research, 10(1), 151-186. https://doi.org/10.30497/ifr.2021.240229.1592
Sensoy, A.M. & Tabak, B., (2014). Dynamic spanning trees in stock market networks: The case of Asia-Pacific, Working Paper Series, and Banco Central do Brasil, 30, pp.1-30.
Shiller, R. J. (2000). Irrational exuberance. Princeton University Press.
Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48. https://doi.org/10.2307/1912017
Soltaninejad, M., & Dawallou, M. (2016). Portfolio optimization using clustering methods. Scientific-Research Quarterly of Asset Management and Finance, 4(4), 1-16.
Stosic, D., Stosic, D., Ludermir, T. B. & Stosic, T. (2018). Collective behavior of cryptocurrency price changes, Physica A: Statistical Mechanics and its Applications 507 pp. 499–509. doi: 10.1016/j.physa.2018.05.050
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268-276. https://doi.org/10.1038/35065725
Taghizadeh, R., & Abdzadeh Kanafi, M. (2023). An analysis of the capital market using a network approach. Financial Researches, 25(3), 369-386.
Teh, B. K., Goo, Y. W., Lian, T. W., Ong, W. G., Choi, W. T., Damodaran, M. & Cheong, S. A., (2015). The Chinese the Chinese Correction of February 2007: How financial hierarchies change in a market crash, Physica A: Statistical Mechanics and its Applications volume 424, pp.225-241. https://doi.org/10.1016/j.physa.2015.01.051
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124-1131
Uddin, s., Jacobson, M. J., (2013), Dynamics of email communications among university students throughout a semester, Elsevier, Journal of Computer & Education 64, 95-103, https://doi.org/10.1016/j.compedu.2013.01.014
Wang, G.J., Xie, C. & Chhen, S., (2016). Multiscale correlation networks analysis of the US stock market: A wavelet analysis, Journal of Economic Interaction and Coordination, pp1-31.
World Bank. (2020). Global Economic Prospects, June 2020. © Washington, DC: World Bank. http://hdl.handle.net/10986/33748 License: CC BY 3.0 IGO
Yang, R., Li, X. & Zhang, T., (2014). Analysis of linkage effects among industry sectors in China’s stock market before and after the financial crisis. Physica A: Statistical Mechanics and its Applications, 411, 12-20. https://doi.org/10.1016/j.physa.2014.05.072
Zięba, D., Kokoszczyński, R. & Śledziewska, K., (2019). Shock transmission in the cryptocurrency market. Is Bitcoin the most influential? International Review of Financial Analysis 64, 102–125. doi: 10.1016/j.irfa.2019.04.009