Aggarwal, R. (1981), “Exchange Rates and Stock Prices: A Study of the U.S. Capital Markets under Floating Exchange Rates”, Akron Business and Economic Review, 12, pp. 7-12.
Ahelegbey, D. F., Billio, M., & Casarin, R. (2016). Sparse graphical vector autoregression: A Bayesian approach. Annals of Economics and Statistics, GENES, 123-124, 333-361.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. doi: 10.15609/annaeconstat2009.123-124.0333
Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. https://doi.org/10.1103/RevModPhys.74.47
Al-Taie, M. Z. & Kadry, S., (2017). Python for graph and network analysis. Cham: Springer International Publishing. pp. 1-184.
Anderson, D. R., & Burnham, K. P. (2004). Model selection and multimodel inference: A practical information-theoretic approach. 2nd Edition, Springer.
Azarpeykan, E. S. (2020). Developing hierarchical stock trees in the capital market (A study in the Tehran Stock Exchange). The 6th National Conference on Applied Research in Management, Accounting, and Healthy Economy in Banking, Stock Exchange, and Insurance.
Baker, M., & Wurgler, J. (2006). Investor sentiment and the cross-section of stock returns. Journal of Finance, 61(4), 1645-1680.
Barber, B. M., & Odean, T. (2001). Boys will be boys: Gender, overconfidence, and common stock investment. The Quarterly Journal of Economics, 116(1), 261-292.
Battiston, Stefano & Farmer, J & Flache, Andreas & Garlaschelli, Diego & Haldane, Andrew & Heesterbeek, Hans & Hommes, Cars & Jaeger, Carlo & May, Robert & Scheffer, Marten. (2016). Complexity theory and financial regulation. Science. 351. 818-819. 10.1126/science.aad0299.
Bernanke, B. S., & Gertler, M. (1999). Monetary policy and asset price volatility. Federal Reserve Bank of Kansas City Economic Review, 84(4), 17-51
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. 5th Edition, Wiley.
Branson, W. H. (1983). Macroeconomic Determinants of Real Exchange Rates. Journal of International Economics, 14(1-2), 1-21.
Brida, J. G., Matesanz, D. & Seijas, M. N., (2016). Network analysis of returns and volume trading in stock markets: The Euro Stoxx case. Physica A: Statistical Mechanics and its Applications, 444, 751-764. doi: 10.1016/j.physa.2015.10.078
Cheshmi, A., & Osmani, F. (2022). The returns of the Iranian stock market during three waves of the COVID-19 pandemic: Evidence from regression with multiple breaks. Iranian Journal of Economic Studies (IJES), 10(2), 339–364.
https://doi.org/10.22099/ijes.2022.40521.1789
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366a), 427-431.
Diebold, F. X., & Yilmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119-134.
Dolfin, M., Kapetanios, G., Leonida, L. & Miranda, J., (2024). Investor behavior and multiscale cross-correlations: Unveiling regime shifts in global financial markets.
https://doi.org/10.48550/arXiv.2408.17200
Dornbusch, R., & Fischer, S. (1980). Exchange Rates and the Current Account. American Economic Review, 70(5), 960-971.
Ebrahimi, S. K., & Rajabi, H. R. (2024). Presenting a model for portfolio optimization and risk management using network theory in Iran’s stock market. Accounting and Auditing Research, 62, 181–202.
Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica, 64(4), 813-836.
Engle, R. F. (2001). GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics. Journal of Economic Perspectives, 15(4), 157-168. doi: 10.1257/jep.15.4.157
Engle, R. F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987-1007
Esmaili, N., & Eyhami, M. (2023). The impact of asymmetric information on stock returns: Using the VPIN approach in the Tehran Stock Exchange. Iranian Journal of Economic Studies (IJES), 12(1), 31–49.
https://doi.org/10.22099/ijes.2024.47570.1909
Fama, E. F. & French, K. R., (1997). Industry costs of equity. Journal of financial economics, 43(2), 153-193.
Fama, E. F., & French, K. R. (1988). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25(1), 23-49.
Francés, C. J., Grau-Carles, P., Arellano, D. J. (2018). The cryptocurrency market: A network analysis. Market Economics and Business Journal, 49: 569-583. https://doi.org 10.7200/esicm.161.0493.4i
George, S., Changat, M., (2017). Network Approach for Stock Market Data Mining and Portfolio Analysis, In 2017 International Conference on Networks & Advances in Computational Technologies (NetACT). doi: 10.1109/NETACT.2017.8076775
Gavin, M. (1989). Exchange Rate Movements and Stock Market Returns. Journal of International Money and Finance, 8(1), 115-124.
Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424–438.
https://doi.org/10.2307/1912791
Granovetter, M. (1985). Economic action and social structure: The problem of embeddedness. American Journal of Sociology, 91(3), 481-510.
Greene, W. H. (2018). Econometric Analysis, (8th ed.). Pearson.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. Review of Financial Studies, 33(5), 2223– 2273. https://doi.org/10.1093/rfs/hhaa009
Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press
Kalyagin, V., Koldanov, A.P. & Koldanov, P.A., (2022). Using similarity measures for spanning tree construction: Theoretical equivalence and practical implications. Journal of Network Science, 10(3), 245-267. https://doi.org/10.1016/j.physa.2022.127482
Khoojine, A. S. & Han, D., (2019).. Network analysis of the Chinese stock market during the turbulence of 2015-2016 using log-returns, volumes and mutual information. Physica a-Statistical Mechanics and Its Applications, 523, 1091-1109. doi: 10.1016/j/physa.2019.04.128
Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society, 7(1), 48-50
Li, Y., Jiang, X. F., Tian, Y., Li, S. P. & Zheng, B., (2019). Portfolio optimization based on network topology. Physica a-Statistical Mechanics and Its Applications, 515, 671-681.
Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer
Mantegna, R. N., (1999). Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193-197
https://doi.org/10.1007/s100510050929
Markowitz, H., (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
Marti, G., Nielsen, F., Bińkowski, M. & Donnat, Ph. (2021). A Review of Two Decades of Correlations, Hierarchies, Networks and Clustering in Financial Markets. rogress in Information Geometry. Signals and Communication Technology. Springer, Cham, 245-274.
https://doi.org/10.1007/978-3-030-65459-7_10.
Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete information. Journal of Finance, 42(3), 483-510.
Millington, T., Niranjan, M. (2021). Construction of minimum spanning trees from financial returns using rank correlation. Physica A: Statistical Mechanics and its Applications, Vol. 566, No. 125605, https://doi.org/10.1016/j.physa.2020.125605.
Mishkin, F. S., & Eakins, S. G. (2018). Financial markets and institutions (9th ed). Pearson.
Montashari, M., & Sadeghi, H. (2018). Classification of financial networks based on their topological properties (A study in the Tehran Stock Exchange). Financial Engineering and Securities Management Quarterly, 11(45), 319-342.
Nabavi Ghadi, N., Tehranachian, A. M., Rasakhi, S., Mojdeh, D., & Jafari Samimi, A. (2024). Monetary policy and crisis contagion in the stock market: An application of the Minimum Spanning Tree (MST).
Research and Economic Policy Quarterly, 31(107), 43-68.
http://dx.doi.org/10.61186/qjerp.31.107.43
Namaki, A., Abbasian, E., & Shafiei, E. (2022). Analyzing the level of systemic risk of Tehran Stock Exchange companies using a complex systems approach.
Financial Management Strategy Quarterly, 10(36).
https://doi.org/10.22051/JFM.2020.30910.2360
Newman, M. E. J. (2010). Networks: An introduction. Oxford University Press
Obstfeld, M., & Rogoff, K. (1995). The mirage of fixed exchange rates. Journal of Economic Perspectives, 9(4), 73-96. doi: 10.1257/jep.9.4.73
Onnela J.P., Chakraborti A. & Kaski, K., (2003). Dynamic of Market Correlation, Taxonomy and Portfolio Analysis, Physical Review, 68, (5). doi: 10.1103/PhysRevE.68.056110
Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335-346.
Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Technical Journal, 36(6), 1389-1401
Ross, S. A., Westerfield, R. W., Jaffe, J., & Jordan, B. D. (2021). Corporate finance (13th ed.). McGraw-Hill Education.
Sadeghi, H., & Sharifi Samani, F. (2016). Topological characteristics of stock networks in the Tehran Stock Exchange (A case study of the JCPOA impact). Master’s Thesis, University of Science and Art.
Sadeghi, H., (2022). Portfolio Management Based on the Topology of the Iranian Stock Market Network, Iranian Journal of Management Studies, 15(3), 569-593. 10.22059/ijms.2021.320018.674466
Sedaghati, S., Samad, S., Farhadi, R., Falah-Shams Lialestani, M., & Mirfeiz, M. (2021). Portfolio management based on the topology of Iran's stock market network. Islamic Financial Research, 10(1), 151-186. https://doi.org/10.30497/ifr.2021.240229.1592
Sensoy, A.M. & Tabak, B., (2014). Dynamic spanning trees in stock market networks: The case of Asia-Pacific, Working Paper Series, and Banco Central do Brasil, 30, pp.1-30.
Shiller, R. J. (2000). Irrational exuberance. Princeton University Press.
Soltaninejad, M., & Dawallou, M. (2016). Portfolio optimization using clustering methods. Scientific-Research Quarterly of Asset Management and Finance, 4(4), 1-16.
Stosic, D., Stosic, D., Ludermir, T. B. & Stosic, T. (2018). Collective behavior of cryptocurrency price changes, Physica A: Statistical Mechanics and its Applications 507 pp. 499–509. doi: 10.1016/j.physa.2018.05.050
Taghizadeh, R., & Abdzadeh Kanafi, M. (2023). An analysis of the capital market using a network approach. Financial Researches, 25(3), 369-386.
Teh, B. K., Goo, Y. W., Lian, T. W., Ong, W. G., Choi, W. T., Damodaran, M. & Cheong, S. A., (2015). The Chinese the Chinese Correction of February 2007: How financial hierarchies change in a market crash,
Physica A: Statistical Mechanics and its Applications volume 424, pp.225-241.
https://doi.org/10.1016/j.physa.2015.01.051
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124-1131
Wang, G.J., Xie, C. & Chhen, S., (2016). Multiscale correlation networks analysis of the US stock market: A wavelet analysis, Journal of Economic Interaction and Coordination, pp1-31.
Yang, R., Li, X. & Zhang, T., (2014). Analysis of linkage effects among industry sectors in China’s stock market before and after the financial crisis. Physica A: Statistical Mechanics and its Applications, 411, 12-20. https://doi.org/10.1016/j.physa.2014.05.072
Zięba, D., Kokoszczyński, R. & Śledziewska, K., (2019). Shock transmission in the cryptocurrency market. Is Bitcoin the most influential? International Review of Financial Analysis 64, 102–125. doi: 10.1016/j.irfa.2019.04.009