The Effect of Artificial Intelligence on The Total Factor Productivity in Iranian Industries

Document Type : Research Paper

Authors

1 Faculty of Humanities & Social Sciences, Ardakan University, ,Ardakan, Iran.

2 Faculty of Economics and Political Science, Shahid Beheshti University, Tehran, Iran

Abstract

This study explores the effects of artificial intelligence (AI) investment on total factor productivity (TFP) in Iranian industries from 1997 to 2020, utilizing a comprehensive dataset organized by four-digit International Standard Industrial Classification (ISIC) codes. We employ the generalized method of moments (GMM) approach to address challenges such as endogeneity and collinearity within a dataset comprising over 200 cross-sectional variables.Our results reveal that both physical and intangible investments significantly influence TFP; a 1% increase in physical investment results in a 0.514% rise in TFP, while intangible investment leads to a 0.288% improvement. A key innovation of this research is the introduction of an AI measurement variable in the production function, employing the Corrado, Hulten, and Sichel (CHS) methodology for a clearer assessment of AI's productivity effects.Although AI investment positively correlates with TFP, its current impact is limited, reflecting the gradual adoption of advanced technologies in Iranian industries. This highlights the need for a comprehensive strategy to fully realize the productivity benefits of AI. We recommend policies aimed at facilitating technology integration and workforce specialization, including investing in training, providing incentives for AI adoption, and promoting collaboration between industry and educational institutions to enhance productivity and competitiveness in the global market.

Keywords

Main Subjects


Article Title [Persian]

تأثیر هوش مصنوعی بر بهره وری کل عوامل در صنایع ایران

Authors [Persian]

  • فروغ اسمعیلی صدرآبادی 1
  • مائده خناری 2
1 دانشکده علوم انسانی و اجتماعی، دانشگاه اردکان، اردکان، ایران.
2 دانشکده اقتصاد و علوم سیاسی، دانشگاه شهید بهشتی، تهران، ایران
Abstract [Persian]

هوش مصنوعی (AI) بر بهره‌وری کل عوامل (TFP) در صنایع ایران از سال 1997 تا 2020 می‌پردازد و از یک مجموعه داده جامع که بر اساس کدهای چهاررقمی طبقه‌بندی بین‌المللی صنایع (ISIC) سازماندهی شده است، استفاده می‌کند. ما از روش GMM برای مقابله با چالش‌هایی مانند درون‌زایی و هم‌خطی در یک مجموعه داده شامل بیش از 200 متغیر مقطعی استفاده می‌کنیم. نتایج ما نشان می‌دهد که هم سرمایه‌گذاری‌های فیزیکی و هم سرمایه‌گذاری‌های غیرملموس تأثیر قابل توجهی بر TFP دارند؛ به‌طوری‌که افزایش 1% در سرمایه‌گذاری فیزیکی منجر به افزایش 0.514% در TFP می‌شود، در حالی که سرمایه‌گذاری غیرملموس بهبود 0.288%ی را به همراه دارد. یکی از نوآوری‌های کلیدی این تحقیق معرفی یک متغیر اندازه‌گیری AI در تابع تولید است که از روش Corrado، Hulten و Sichel (CHS) برای ارزیابی روشن‌تری از تأثیرات بهره‌وری AI استفاده می‌کند. اگرچه سرمایه‌گذاری در AI به‌طور مثبت با TFP همبستگی دارد، تأثیر فعلی آن محدود است که نشان‌دهنده پذیرش تدریجی فناوری‌های پیشرفته در صنایع ایران است. این موضوع نیاز به یک استراتژی جامع برای بهره‌برداری کامل از مزایای بهره‌وری AI را برجسته می‌کند. ما سیاست‌هایی را برای تسهیل ادغام فناوری و تخصص‌گرایی نیروی کار، از جمله سرمایه‌گذاری در آموزش، ارائه مشوق‌هایی برای پذیرش AI و ترویج همکاری بین صنعت و مؤسسات آموزشی به‌منظور افزایش بهره‌وری و رقابت‌پذیری در بازار جهانی توصیه می‌کنیم.

Keywords [Persian]

  • هوش مصنوعی (AI)
  • بهره وری کل عوامل تولید (TFP)
  • صنایع ایران
  • سرمایه گذاری های مشهود و نامشهود
  • روش گشتاورهای تعمیم یافته (GMM)
Abrardi, L., Cambini, C., & Rondi, L. (2019). The economics of artificial intelligence: A survey (RSCAS Research Paper No. 2019/58). Robert Schuman Centre for Advanced  Studies. https://doi.org/10.2870/971678
Acemoglu, D. (2022). The simple macroeconomics of AI. Economic Policy, eiae042. https://doi.org/10.1093/epolic/eiae042.
Amini, A., & Hejazi Azad, Z. (2008). The effects of human capital and R&D in TFP growth: The case of Iran. Iranian Journal of Economic Research, 11(35), 1-30
Arellano, M., & Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. The Review of Economic Studies, 58(2), 277–297.
Autodesk. (2021). Generative design: The future of engineering and design. Retrieved from https://www.autodesk.com/solutions/generative-design
Baily, M. N., & Kane, A. T. (2024). How will AI affect productivity? Brookings Institution. Retrieved from https://www.brookings.edu/articles/how-will-ai-affect-productivity/
Baltagi, A. (2008). Econometrics and Economic Theory. Springer.
Bessen, J. E. (2019). AI and Jobs: The Role of Demand. NBER Working Paper No. 24235.
Bessen, J. E. (2019). Artificial intelligence: A transformational technology for the future of work. Harvard Business Review. Retrieved from https://hbr.org/2019/10/artificial-intelligence-a-transformational-technology-for-the-future-of-work
Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Proceedings of the 2018 Conference on Fairness, Accountability, and Transparency, 149-158. https://dl.acm.org/doi/10.5555/3287560.3287573.
Blundell, R., & Bond, S. (1998) .Initial Conditions and Moment Restrictions in Dynamic Panel Data Models. Journal of Econometrics, 87(1), 115-143.
Brynjolfsson, E. & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton & Company.
Brynjolfsson, E., & McAfee, A. (2016). Artificial intelligence and its economic impact. Science, 352(6281), 1535-1540. https://doi.org/10.1126/science.aaf1098
Brynjolfsson, E. (2021). The productivity J-curve: How intangibles complement general purpose technologies. American Economic Journal: Macroeconomics, 13(1), 1-25. https://doi.org/10.1257/mac.20170604
Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity. Econometrica, 50(6), 1393-1414.
Choi, T. H., Cheng, T. C. E., & Wu, C. H. (2020). Artificial intelligence in supply chain management: A review of key applications and their implications. Transportation Research Part E: Logistics and Transportation Review, 142, 102118. https://doi.org/10.1016/j.tre.2020.102118
Chui, M., Manyika, J., & Miremadi, M. (2016). "Where machines could replace humans—and where they can’t (yet)." McKinsey Quarterly.
Corrado, C., Halton, C., & Sechel, C. (2005). Intangible capital and economic growth. The Review of Income and Wealth, 51(1), 217-236. https://doi.org/10.1111/j.1475-4991.2005.00161.x
Corrado, C., Hulten, C., & Sichel, D. (2006). "Intangible Capital and U.S. Economic Growth." The Review of Income and Wealth, 52(3), 339-362.
Corrado, C., Haskel, J., Jona-Lasinio, C., & Iommi, M. (2018). Intangible assets in the digital age: The implications for productivity and growth. The Conference Board of Canada. Retrieved from https://www.conferenceboard.ca/e-library/documents/2018/intangible-assets-in-the-digital-age-the-implications-for-productivity-and-growth
Corrado, C., Haskel, J., & Jona-Lasinio, C. (2020). Artificial intelligence and productivity: An intangible assets approach. In Economics of Artificial Intelligence (Vol. 40, pp. 77-95). University of Chicago Press
Corrado, C.,Haskel,J.,& Jona Lasinio,C.)2021(. Artificial intelligence and productivity: an intangible assets approach: Oxford Review of Economic Policy. https://doi.org/10.1093/oxrep/grab018
Czarnitzki, D., Fernández, G. P., & Rammer, C. (2022). Artificial intelligence and firm-level productivity (ZEW Discussion Paper No. 22-005). Centre for European Economic Research (ZEW). https://www.zew.de/en/publications/2022/debate-on-the-impact-of-ai-on-firm-productivity.
Diewert, W. E. (1993). Index Number Theory: A Survey. In Handbook of Applied Econometrics ,2,100-142)
Diewert, W. E. (1976). Exact and Superlative Index Numbers. Journal of Econometrics, 4(2), 115-145. 
Dahlberg, T., Järvinen, J., & Lappalainen, P. (2021). Leveraging AI in financial services: Assessing survival in an era of innovation. Journal of Business Research, 122, 101-109. https://doi.org/10.1016/j.jbusres.2020.08.083
Davenport, T. H., & Ronanki, R. (2018). AI for the real world. Harvard Business Review, 96(1), 108-116. https://hbr.org/2018/01/ai-for-the-real-world
Frey, C. B., & Osborne, M. A. (2017). "The future of employment: How susceptible are jobs to computerization?. Technological Forecasting and Social Change, 114, 254-280.
Green, W. H. (2008). Econometric Analysis. Pearson Education.
Gupta, R., Nair, K., Mishra, M., Ibrahim, B., & Bhardwaj, S. (2024). Adoption and impacts of generative artificial intelligence: Theoretical underpinnings and research agenda. International Journal of Information Management Data Insights, 4(1), 100232. 
Jorgenson, D. W. (1963). Capital Theory and Investment Behavior. American Economic Review, 53(2), 247-259.
Jorgenson, D. W. (1966). The Theory of Investment Behavior. In Brookings Papers on Economic Activity, 1966(2), 179-253.
Jorgenson, D. W. (1986). The Contribution of Individual Inputs to Growth. The Review of Economics and Statistics, 68(2), 153-159. 
Jäger, A., Kauffeld, S., & Dörner, T. (2021). Artificial intelligence and productivity: An intangible assets approach. Oxford Review of Economic Policy, 37(2), 324-342. https://doi.org/10.1093/oxrep/grab018
Jan, Z., Ahamed, F., Mayer, W., Patel, N., Grossmann, G., Stumptner, M., & Kuusk, A. (2022). Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities. Expert Systems with Applications, 20(2), 119456. https://doi.org/10.1016/j.eswa.2022.119456.
Jha, R., Srivastava, A., & Gupta, S. (2021). Quality inspection using machine learning: A review of case studies in the manufacturing sector. International Journal of Quality & Reliability Management, 38(8), 1714-1733. https://doi.org/10.1108/IJQRM-06-2020-0211
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Tian, L., & Li, H. (2017). Artificial intelligence in healthcare: Anticipating challenges to ethics, privacy, and bias. American Journal of Industrial Medicine, 60(12), 1114-1121. https://doi.org/10.1002/ajim.22737.
Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Industry 4.0 and the supply chain: A systematic review and future research directions. Computers & Industrial Engineering, 139, 106202. https://doi.org/10.1016/j.cie.2019.106202
Kendrick, J. W. (1976). The Formation and Stocks of Total Capital. New York: Columbia University Press.
Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A Contribution to the Empirics of Economic Growth.The Quarterly Journal of Economics, 107(2), 407-437.
Mátyás, L., & Sevestre, P. (Eds.). (2008). The econometrics of panel data: Fundamentals and recent developments in theory and practice (3rd ed.). Springer.
McKinsey Global Institute. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. Retrieved from https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy
McKinsey Global Institute. (2020). Notes from the AI frontier: Modeling the impact of AI on the world economy. Retrieved from https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy
McKinsey Global Institute. (2021). The productivity imperative: How organizations can adapt to a digital world. Retrieved from https://www.mckinsey.com/business-functions/organization/our-insights/the-productivity-imperative-how-organizations-can-adapt-to-a-digital-world.
Meinen, G., Verbiest, P., & de Wolf, P.-P. (1998). Perpetual inventory method: Service lives, discard patterns, and depreciation methods. Statistics Netherlands, Department of National Accounts.
OECD. (2024). The impact of Artificial Intelligence on productivity, distribution and growth: Key mechanisms, initial evidence and policy challenges. OECD Artificial Intelligence Papers.
O'Mahony, M., & Vecchi, M. (2005). Quantifying the contributions of productivity and real wages to economic growth in the UK: 1970-1991. Applied Economics, 37(14), 1721-1738. 
Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy, 98(5), S71-S102.
Porter, M. E., & Heppelmann, J. E. (2014). How Smart, Connected Products Are Transforming Competition. Harvard Business Review, 92(11), 64-88.
Saam, M. (2024). Macroeconomic productivity effects of artificial intelligence. The Economists’ Voice, 21(1), 1-11. https://doi.org/10.1515/ev-2024-0072
Susskind, R., & Susskind, D. (2015). The Future of the Professions: How Technology Will Transform the Work of Human Experts. Harvard University Press
Solow, R. M. (1956). A Contribution to the Theory of Economic Growth. The Quarterly Journal of Economics, 70(1), 65-94.
Solow, R. M. (1957). Technical Change and the Aggregate Production Function. The Review of Economics and Statistics, 39(3), 312-320.
Tian, K., Chen, Y., & Zhang, H. (2021). The impact of artificial intelligence on operational performance: A study of the manufacturing sector. International Journal of Production Economics, 231, 107865. https://doi.org/10.1016/j.ijpe.2020.107865
Varian, H. R. (1992). Microeconomic Analysis. W. W. Norton & Company
World Economic Forum. (2021). How artificial intelligence is transforming the manufacturing industry. Retrieved from https://www.weforum.org/agenda/2021/02/how-ai-is-transforming-manufacturing/
Appendix A: Intangible Capital and TFP: A Theoretical Analysis